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Abstract

The Chicago Board of Options Exchange (CBOE) advocates linking variable
annuity (VA) fees to its trademark VIX index in a white paper (CBOE, 2013a,b). It
claims that the VIX-linked fee structure has several advantages over the traditional
fixed percentage fee structure. However, the evidence presented in the white paper
is largely based on non-parametric extrapolation of historical data on market prices.
Our work lays out a theoretical basis with a parametric model to analyze the impact
of the VIX-linked fee structure and to verify some claims from the CBOE white
paper. In a Heston-type stochastic volatility setting, we jointly model the dynamics
of an equity index (underlying the value of VA policyholders’ accounts) and the VIX
index. In this framework, we price a guaranteed minimum maturity benefit (GMMB)
with VIX-linked fees. Through numerical examples, we show that the VIX-linked fee
reduces the sensitivity of the insurer’s liability to market volatility, when compared
to a VA with the traditional fixed fee rate.

Key-words: Variable annuity, VIX index, dynamic fee, segregated funds, stochastic
volatility, Heston model.

1 Introduction

Variable annuities (VAs) and many other equity-linked products in life insurance offer indi-
vidual policyholders participation in the financial market while providing some protection
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against poor investment performance. While the industry used to perceive the guaranteed
benefits as small add-ons with very little cost, equity-linked insurance products proved
to carry significant long-term financial risks during the 2007-2008 financial crisis and the
global recession that ensued. The crisis and its consequences on insurers highlighted the
need for sound risk management strategies.

With regulation moving towards a“mark-to-market”valuation of liabilities, future costs
and reserves for VAs are increasingly unpredictable, especially in times of financial turmoil.
The financial guarantees embedded in variable annuities are typically financed through
charges paid directly from policyholders’ accounts. These fees are usually set as a fixed
percentage of account values and deducted regularly until maturity. This fee structure
often creates a misalignment between insurers’ income streams and the market value of
liabilities, which can in turn increase the cost of hedging and reduce the effectiveness of
risk-management strategies.

While the long-term guarantees offered with VAs can be hedged using long-dated op-
tions, this strategy may be expensive because of the lack of suppliers of long-term deriva-
tives in the financial market. Another way to hedge these long-term guarantees is to set up
a hedging portfolio by rolling over short-dated options, which are more liquid and better
suited to protect the insurer against short-term changes in implied volatility. However,
such a hedge can become expensive in times of financial turmoil, since the cost of the new
options can be high and unpredictable. For these reasons, the Chicago Board of Options
Exchange (CBOE) has suggested, in a white paper (see CBOE 2013a; 2013b), to make the
VA charge depend on the CBOE’s trademark Volatility Index (VIX), which is a proxy for
the 30-day forecast of market implied volatility of the S&P500 index option prices. The
VIX is intended to measure the market’s expectation of near-term stock market volatility
and is often referred to as the “fear index” or the “gauge index”. In the insurance industry,
SunAmerica of AIG a has started to offer variable annuities with a fee rate linked to the
VIX index.

The VIX index is typically negatively correlated with the underlying index price be-
cause of the well-documented leverage effect, i.e. the observed tendency of an asset’s
volatility to be negatively correlated with the asset’s returns, especially when the index
price drops. This phenomenon is well-documented in the empirical finance literature; see
for example Section 7.3 of Rebonato (2005). Since the financial guarantees embedded in
VAs are often similar to put options, their value increases when the underlying price drops
and when the volatility rises. In other words, VA liabilities and their hedging costs are
positively correlated with the VIX index. As mentioned by the CBOE (2013a), a VIX-
linked fee structure would help re-align the value of the VA guarantees and the fees paid
by the policyholder.

By re-aligning the value of the guarantee and the level of fees paid, a VIX-linked fee
structure may also help manage lapsation risk. In general, a policyholder is more likely

aSee slide 8 of http://www.cboermcus.com/uploads/5/2/6/5/52653589/52748_grissom-pres.pdf
and the news coverage at http://retirementincomejournal.com/issue/february-3-2010/article/

sunamerica-links-va-rider-fees-to-volatility-index and http://www.annuitydigest.com/

reviews/intelligent-combination-income-plus-income-builder-and-vix
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to surrender the VA contract when the perceived value of the guarantee is lower than
the perceived expected future fees. With a fixed fee structure, more policies lapse when
the market is stable, as policyholders perceive themselves as overpaying. In contrast,
policyholders are less likely to surrender their policy under volatile market conditions as
they feel insecure about their investments. This is similar to the phenomenon of adverse
selection for traditional life insurance. With the VIX-linked fee structure, there is less
incentive for policyholders to behave in such a way. In times of financial turmoil, high
VIX index values lead to increased fees, reducing the incentive for the policyholder to
remain in the contract. This reduces the adverse selection effect. This consequence of
the VIX-linked fee structure is not explored further in the present paper, but could be
investigated in future work.

Most of the academic literatures on VAs employ models based on the current market
practice of a fixed percentage fee. However, dynamic fee structures that reduce the impact
of policyholder behavior, another important risk factor for insurers, has recently been
introduced in the literature. In that mindset, Bernard, Hardy, and MacKay (2014) consider
a fee paid at a constant rate only when the VA account value is below a certain level under
the Black-Scholes model. This work is extended to more general exponential Lévy market
models in Delong (2014). MacKay, Augustyniak, Bernard, and Hardy (2015) show that
this type of fees can be used to reduce an insurer’s exposure to policyholder’s behavior,
which is an important risk factor. Bernard and MacKay (2015) study the impact on the
surrender incentive of a fee set as a constant amount (as opposed to a constant rate) in
the Black-Scholes model. By modifying the fee structure to reduce the impact of another
major risk factor, market volatility in this case, our work is line with this growing body
of literature. This paper distinguishes itself from prior work in several ways. First, our
work analyzes the VIX-linked fee structure designed to mitigate volatility risk, while past
work focused on policyholder behavior. Second, this paper presents a model for linking
VA fees to a latent volatility factor, which requires a two-dimensional model for equity
index and stochastic volatility, while previous work considered a fee structure dependent
on policyholders’ VA accounts, which is often based on a one-dimensional model.

To the authors’ best knowledge, this is the first paper to study a VIX-linked fee struc-
ture in the academic literature.b The CBOE published a short non-parametric analysis of
the suggested VIX-linked fee structure using historical index prices, which is an approach
fundamentally different from the parametric modeling in this paper. Furthermore, the
variable fee formula was set in an ad hoc manner in the CBOE report. Implementing such
a fee structure in the absence of truly analytic models and without sound quantitative
tools could potentially expose the variable annuity industry to significant systemic risk.

The objective of this paper is to fill this gap in the current literature by assessing the
VIX-linked fee structure under a parametric stochastic volatility model that incorporates

bA working paper, Bernard, Kolkiewicz, and Tang (2016), has been brought to our attention. The
authors propose a design that aligns the fee of a VA to the traded VIX index. In an empirical analysis,
they fit the joint distribution of the VIX and the S&P500 index using a Gaussian copula, and carry out
a parametric study based on the Black-Scholes model. Our present work takes into account the effects of
stochastic volatility, and their model can be seen as a special case of ours.

3



practical features such as the leverage effect and the stochastic evolution of volatility. We
develop a model example based on a guaranteed minimum maturity benefit (GMMB), in
order to assess the efficacy of the new fee structure in reducing the insurer’s exposure to
market volatility. Many of the results in this paper can be extended to more complex
guaranteed benefits in future research.

Our contribution to the literature is three-fold.

1. We provide a theoretical framework to quantify the effect of the VIX-linked fee
structure by expressing the VA rider fee as a function of the parameters of a stochastic
volatility model. We are thus able to write the dynamics of the underlying VA
account only in terms of the market model parameters.

2. The characteristic function of the logarithm of the resulting account value is derived
and hence used to obtain an expression for the price of a GMMB with VIX-linked
fee. The underlying two dimensional model, which is an extension of the Heston
model, has not been studied in previous literature.

3. The resulting analytic formulas provide an efficient tool to develop a numerical ex-
ample. In contrast with the traditional fixed fee, we show that the VIX-linked fee
reduces the sensitivity of the insurer’s liability to market volatility and increases the
robustness of future liabilities to changes in the long-term mean of the volatility.

The paper is organized as follows. Section 2 lays out a mathematical model that jointly
models the S&P500 index and the VIX index, and introduces the VIX-linked fee structure.
In Section 3, we derive the characteristic function for the log-value of a VA account, as well
as expressions for the price and Greeks of a GMMB. Numerical examples are presented in
Section 4 and illustrate the effect of the VIX-linked fee structure on the insurer’s exposure
to market volatility. Section 5 concludes this paper with a summary of the main findings
as well as directions for future research.

2 Market model and fee structure

2.1 Market model and notation

In this paper, we consider a VA contract with a single investment account (which we often
refer to as the “VA account”) tracking the value of an equity index or an equity fund. We
use the following notations:

• {St}t>0 – the underlying equity index;

• {Ft}t>0 – the VA account;

• {VIXt}t>0 – the value of the VIX index;

• {ctott }t>0 – the total fee rate.
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The total fee rate will be explained in details in Section 2.2 below. Throughout this paper,
we assume that the equity index is the S&P500, since the VIX index is closely related to
the value of this index. This is also the assumption used by the CBOE in their white
papers (CBOE 2013a; 2013b). To assess and quantify the impact of a VIX-linked fee
structure, we choose the market model for {St}t>0 with two criteria in mind. First, the
model should include stochastic volatility in order to incorporate the dynamics of the VIX
index in a consistent manner. Thus the VIX-linked fee will also be driven by stochastic
dynamics, allowing for a more complete analysis of the effect of the fee structure. Second,
among a large choice of stochastic volatility models, we choose one that is mathematically
tractable in order to develop explicit analytical formulas for pricing and risk management
purposes. It is widely acknowledged in the variable annuity industry that pricing and
financial reporting based on Monte Carlo simulations can be extremely time-consuming
and may require several layers of nested simulations. Closed-form expressions, which would
only be available in parametric models, can be useful to speed up simulations and reduce
computational burden, as they can replace pricing or computation of risk measures in
inner loops of nested simulations. A hybrid use of a closed-form expression and Monte
Carlo simulations is presented with a numerical example in Section 4.

An ideal candidate meeting both of the above-mentioned criteria is the Heston stochas-
tic volatility model (Heston (1993)). We consider a probability space (Ω,F ,P) with the
natural filtration {Ft, t > 0}, where P is the objective (real-world) measure. In the Heston
model, the index St has the following dynamics

dSt
St

= µ dt+
√
VtdW̃

(1)
t ,

dVt = κ∗(V̄ ∗ − Vt)dt+ σ
√
VtdW̃

(2)
t , (1)

where µ is the drift term representing physical return, κ∗ > 0 is the mean-reversion rate at
which the variance process tends to move towards its long-term mean V̄ ∗ > 0, and σ > 0 is
the “volatility of volatility” parameter. We assume that the P-Brownian motions W̃ (1) and
W̃ (2) have constant correlation −1 6 ρ 6 1, which means that the cross variation satisfies
[W̃

(1)
t , W̃

(2)
t ] = ρt. Due to the leverage effect, the correlation ρ is usually negative for stock

or equity index prices. In other words, high market volatility is generally associated with
low returns.

The process Vt is the latent stochastic variance process. It follows the well-known
Cox-Ingersoll-Ross (CIR) process, which was first introduced in Cox, Ingersoll, and Ross
(1985) to model the evolution of interest rates. It has the desirable property that it never
breaches its lower boundary at zero if the Feller condition 2κ∗V̄ ∗ > σ2 is satisfied. This
condition is a consequence of the Feller’s test of explosions (Theorem 5.5.29, page 348
of Karatzas and Shreve (1991)). The CIR process also exhibits mean-reversion, which is
consistent with the observation of variance in the empirical finance literature.

In the Heston model, the presence of stochastic volatility leads to market incomplete-
ness, so there exists an infinite number of equivalent martingale measures. The risk-neutral
measure used for pricing purposes is obtained by specifying a so-called “market price of
volatility risk” Λ(S, V, t), which is assumed to be proportional to the volatility. In other
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words, Λ(S, V, t) = λ
√
V for some constant λ. For more details on this change of measure,

see Heston (1993) and Gatheral (2006). With such a parameter, the dynamics of the un-
derlying index and of the instantaneous volatility have the same form under the real-world
measure and the risk-neutral one, albeit with different parameters.

Then under the resulting Q-measure, the underlying index value under the Heston
model has the following dynamics

dSt
St

= r dt+
√
VtdW

(1)
t ,

dVt = κ(V̄ − Vt)dt+ σ
√
VtdW

(2)
t , (2)

where r is the risk-free interest rate, κ = κ∗ + λ, V̄ = κ∗V̄ ∗/(κ∗ + λ), and W
(1)
t and W

(2)
t

are Q-Brownian motions with cross variation [W
(1)
t ,W

(2)
t ] = ρt. Note that under the Q-

measure, σ reflects the “significance” of the volatility skew effects, and higher values of σ
will lead to more prominent skew effects in the implied volatility surface. For further details
on the Heston model, interested readers can refer to Gatheral (2006) and the references
therein.

2.2 VA fee schedule

We assume that the fee rate paid from the VA account is composed of two parts. The
first part, called investment management fee, is used to compensate the managers of the
underlying investment funds (such as a mutual fund or an ETF) for their services. The
second part, called rider fee or rider charge, goes to the insurer in order to cover the cost
of additional investment guarantees (or riders). So far, our setting is similar to the one
used, for example, in Chen, Vetzal, and Forsyth (2008). However, while they keep both
parts of the fee rate fixed, we assume that the rider fee varies with the market volatility.

We denote the rate of total fees paid out of the fund by ctott . Therefore, we have

ctott = cinv + ct, (3)

where cinv and ct are the rates of the investment management fee and of the rider charge,
respectively. Throughout the paper, we assume that cinv > 0 is constant and determined
at t = 0.

2.2.1 VIX-linked rider charge

The CBOE Volatility Index (VIX) was introduced by the CBOE in 2003 with the purpose
of measuring the market’s expectation of the 30-day volatility implied from at-the-money
S&P500 Index (SPX) option prices. As such, it is a proxy for the volatility of the equity
market. The VIX is calculated as the weighted average of SPX call and put prices over a
wide range of strikes. For the exact formula used by the CBOE for the calculation of the
VIX, see for example equation (1) on page 4 of the white paper CBOE (2013a).
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The square of the VIX, denoted by VIX2, can be understood with mathematical simpli-
fications as the risk-neutral expectation of the average of the integrated variance over the
next 30 daysc. Thus, in the Heston model presented above, we express the VIX squared
at time t > 0 as

VIX2
t = Et

[
1

τ

∫ t+τ

t

Vsds

]
, (4)

where τ = 30/365. For brevity of notation, we write Et[·] for EQ[·|Ft]. Proposition 5.1
of Zhu and Zhang (2007) allows us to write this expectation as a function of the current
instantaneous variance Vt

Et

[
1

τ

∫ t+τ

t

Vsds

]
= A+BVt, (5)

where

A =
V̄ (κτ − 1 + e−κτ )

κτ
, B =

1− e−κτ

κτ
. (6)

Thus, we can re-write the square of the VIX index at time t as a linear function of Vt

VIX2
t = A+BVt. (7)

The purpose of the VIX-linked fee rate is to increase the fee income when the value of
VA guarantee rises, in order to compensate for the heightened level of financial risk. Such
values usually occur when the volatility of the equity index is high. To achieve a positive
correlation between the fee and the liability, we want the variable fee to be an increasing
function of the VIX index.

While there are other ways to link the rider fee rate to the VIX index, we consider
a linear function of the squared VIX for its mathematical tractability. In particular, we
assume that the VIX-linked rider fee ct is determined by

ct := c̄+m · VIX2
t , (8)

where c̄ > 0 is the “base fee rate” and m > 0 is the “multiplier”. Intuitively speaking, as
the VIX is an index of volatility, its square is a measure of the variance of market stock
prices. This set of two parameters, (c̄, m), provide flexibility in setting the fee structure.
As we will show in Section 4, a fair fee structure (see Definition 3.1) associates a higher
base fee rate c̄ with a lower multiplier m. Therefore, the level of the base fee rate is related
to the sensitivity of the rider fee income to the VIX index. By setting the fee rate c̄, an
insurer can choose the level of dependence of the fee income on the VIX index.

It follows immediately from (8) that the VIX-linked fee rate is always non-negative,
regardless of the fluctuation in the VIX index. Using (3), (7) and (8), one can rewrite

ctott = β + α(Vt − V̄ ), (9)

cSee equation (5) on page 524 of Zhang and Zhu (2006).
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where α := m(1− e−κτ )/(κτ) > 0 and β := cinv + c̄+m · V̄ .
Note that V̄ is the long-term mean of variance for the mean-reverting variance process

{Vt, t > 0}. Therefore, the constant β in (9) can be viewed as the “long-term average fee
rate” and α can be interpreted as the “volatility risk premium” rate, at which the rider
fee changes with the deviation of variance from its long-term mean. The positivity of
α implies that policyholders will be charged more to compensate for the additional risk
undertaken by insurers due to high volatility in the market; a higher instantaneous volatil-
ity leads to a higher fee rate. This is clearly in agreement with the intended purpose of
the VIX-linked fee structure in (8), which aims for a better alignment of fee income and
liability. A numerical illustration of this relationship can be found in Section 4.4.

2.3 Dynamics of the fund with VIX-linked fees

As the fees are paid out of the fund at the rate ctott defined in (3) and (8), the total
(accumulated) amount of fees paid up to time t, denoted by Ctot

t , is given by

dCtot
t = ctott Ft dt. (10)

Throughout the paper, we assume that the full initial premium is invested in the fund
tracking the equity index, and that no further premiums are deposited later on. The
instantaneous change in the VA account at any point in time is composed of two parts –
the instantaneous return from the investment in the equity index, and the instantaneous
deduction of fees.

dFt
Ft

=
dSt
St
− dCtot

t

Ft
=
dSt
St
− ctott dt.

It follows immediately from (9) that the risk-neutral dynamics of the policyholder’s
account value is given by the following system of SDEs:

dFt
Ft

= [r − β − α(Vt − V̄ )]dt+
√
VtdW

(1)
t ,

dVt = κ(V̄ − Vt)dt+ σ
√
VtdW

(2)
t . (11)

The VIX-linked fee model (11) is new to the literatured and is distinguished from
the original Heston stochastic volatility model by the presence of a linear function of Vt
in the drift of the account value process. It should be noted that the derivation of the
characteristic function related to (11) does not follow immediately from its original Heston
model counterpart (see Heston (1993)), and that it requires non-trivial manipulations. See
Proposition 3.1 for more details.

The model presented in (11) includes simpler models as special cases. For these models,
closed-form expressions for option prices are well documented in the literature and can be
used as benchmarks for numerical testing.

dIn our setting, it would be straightforward to add a constant dividend yield, if one desires, by making
the appropriate change in the drift of the index price, and in the definition of β.
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1. If we set σ = κ = 0, the fund value process becomes a geometric Brownian motion
with drift parameter r − β − α(V0 − V̄ ) and volatility parameter

√
V0.

2. If we setm = 0, then it implies α = 0. Thus, from (11), the resulting drift rate is r−β,
which is consistent with the original Heston model assuming a constant dividend
yield of β. Characteristic functions of the log stock price in the Heston model and
related option pricing have been studied in many papers, such as Albrecher, Mayer,
Schoutens, and Tistaert (2007), and Lord and Kahl (2010).

2.4 Dynamics of the fund under the real-world measure

The main goal of this paper is to assess the effect of the VIX-linked fee on the liability
of the GMMB, which is calculated under the risk-neutral measure. However, for risk
management purposes, we are also interested in the distribution of future liabilities under
the real-world measure, since it represents the uncertainty with the future value of the
insurer’s financial obligations. Indeed, while the risk-neutral measure is an appropriate
tool for pricing purposes, it is not representative of the actual evolution of the risk factors
that affect insurers. For this reason, we also need to introduce the dynamics of the account
Ft under the real-world measure P.

In order to incorporate the VIX-linked fee in the real-world dynamics of the fund, we
re-write the fee defined in (9) in terms of the real-world parameters κ∗ and V̄ ∗:

ctott = β∗ + α∗(Vt − V̄ ∗), (12)

with

α∗ := m h(τ(κ∗ + λ)),

β∗ := cinv + c̄+mV̄ ∗
(

κ∗

κ∗ + λ
(1− h(τ(κ∗ + λ))) + h(τ(κ∗ + λ))

)
,

where h(x) = (1 − e−x)/x. This notation allows us to keep the same form for ct under
both the measures Q and P. To obtain the real-world dynamics of the VA account, we use
(1) and obtain

dFt
Ft

= (µ− β∗ − α∗(Vt − V̄ ∗)) dt+
√
VtdW̃

(1)
t , (13)

with Vt as given in (1).

3 Pricing and hedging the GMMB

In this section, we derive an expression for the value of a GMMB written on a VA contract
with a VIX-linked fee structure. We also give results pertaining to the Greeks of the
GMMB.
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3.1 Pricing the GMMB

Consider a GMMB rider, which guarantees the policyholder the greater of a guaranteed
amount G and the fund value FT at maturity T of the VA policy, if she is still alive.
Common types of guarantees include:

• A full refund of the initial premium: G = F0;

• A refund of initial premium with “roll-up” at the rate δ: G = F0e
δT .

Since the policyholder’s account is typically managed by a third-party investment man-
ager, the insurer is only responsible for the difference between the guaranteed amount G
and the account value FT at maturity when the former exceeds the latter, usually due to
poor market performance. Therefore, if the policyholder is still alive, the cost at maturity
of such a guarantee, from the insurer’s perspective, is equal to

(G− FT )+ := max(G− FT , 0). (14)

Denote by τx the random variable representing the future lifetime of a policyholder aged
x at inception of the VA contract, which is assumed to be independent of the underlying
dynamics. Then, using the strong Markov property, it is easy to show that there exists
a function Π := Π(t, f, v) such that the no-arbitrage value of the guarantee at time t is
given by

Π(T − t, Ft, Vt) = Et[e
−r(T−t)(G− FT )+1{τx>(T−t)}], (15)

where 1A = 1 on the set A and 0 elsewhere.
It is assumed that the insurer sells a large enough number of VA policies of similar

sizes to a homogeneous population so that the idiosyncratic mortality risk is diversified.
Even though the VA contracts are all linked to the same equity index, we can still apply
an extended version of the strong law of large numbers, as discussed in full details in Feng
and Shimizu (2016) and Feng (2014). Then, as in MacKay, Augustyniak, Bernard, and
Hardy (2015), the value of the guarantee (15) can be written ase

Π(T − t, Ft, Vt) = T−tpxEt[e
−r(T−t)(G− FT )+], (16)

where T−tpx = Q(τx > T −t). In this paper, we focus on the volatility risk and its effect on
the expectation in (16). Therefore, in the following we assume T−tpx = 1. This assumption
could easily be relaxed and would only change our results by a constant.

It is clear that the computation of the cost of the guarantee in (16) requires the risk-
neutral distribution of FT . Thus, we consider the stochastic process Xt := ln(Ft/F0),
0 6 t 6 T and derive the conditional characteristic function ϕ(u, t) := E

Q
t [eiuXT ]. When-

ever necessary, we write ϕ(u, t;T, Vt) to emphasize its dependence on the parameters T
and Vt.

eHere we further assume that market and biometric risks are independent, and that survival probabil-
ities are the same under the real-world measure and the risk-neutral measure.
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3.1.1 Characteristic function of log account value

The following is the main result of this paper, and provides the characteristic function of
the log of the scaled account value XT := ln(FT/F0) conditional on Ft.
Proposition 3.1. The conditional characteristic function of XT is given explicitly by

ϕ(u, t) = exp
{
iuXt + iu(r − β + αV̄ )(T − t) + κV̄ (T − t) q

σ2

+
2κV̄

σ2
ln

1− g
1− ge−d(T−t) +

Vtq

σ2

1− e−d(T−t)

1− ge−d(T−t)

}
, (17)

where d = d(u) :=
√

(κ− iρσu)2 + σ2((2α + 1)iu+ u2), q = q(u) := κ − d − iρσu, and
g = g(u) := q/(q + 2d).

The proof of Proposition 3.1 can be found in Appendix A. For notational convenience,
in the following we denote ϕ(u) := ϕ(u, 0).

Remark 3.1. While there are other representations of the same characteristic function
as seen in the proof of Proposition 3.1, we have chosen the formulation in (17) for which
the fraction G(u, t) := (1 − g(u))/(1 − g(u)e−d(u)(T−t)) does not move across the branch
cut of the complex logarithmic function (−∞, 0]. The advantage of such a formula over
other equivalent forms is that it only utilizes the principal branch of the logarithmic func-
tion, which is built into most mathematical programming platforms, such as Maple and
Mathematica.

A similar technical problem and treatment appeared in the Heston model, as discussed
in details in Albrecher, Mayer, Schoutens, and Tistaert (2007), and Lord and Kahl (2010).
Note that if we take β = α = 0 in (17), the formula reduces to the second formulation
in equation (2) on page 84 of Albrecher, Mayer, Schoutens, and Tistaert (2007). This is
intuitive since our model in (11) reduces to the original Heston model when β = α = 0.

Remark 3.2. It is straightforward to generalize the above analysis in Proposition 3.1 to
the case of deterministic time-dependent interest rates to account for the term structure
of interest rates. i.e. we consider rs, s > 0. The only modification we need to make is to
replace r(T − t) by

∫ T
t
rsds wherever they appear. It is also possible to extend the analysis

to account for stochastic interest rates, where we assume that r follows a stochastic process
possibly correlated with the fund F and the volatility V . For simplicity, we do not present
the required analysis, which can be carried out using ideas similar to the ones in van
Haastrecht, Lord, Pelsser, and Schrager (2009).

3.1.2 Risk-neutral valuation of the GMMB

Using the characteristic function of XT , we can develop a Black-Scholes type formula for
the time-t value of the GMMB. It follows from (14) and the strong Markov property that

Π(T − t, Ft, Vt) = e−r(T−t)E(Ft,Vt)[(G− FT )+]

= e−r(T−t) (GΠ1(T − t, Ft, Vt)− FtΠ2(T − t, Ft, Vt)) , (18)
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where

Π1(T − t, f, v) := Q(XT 6 ln(G/f)|Ft = f, Vt = v),

Π2(T − t, f, v) := E(f,v)[e
XT I

(
XT 6 ln(G/f)

)
],

and here E(f,v)[·] is short-hand notation for E[·|Ft = f, Vt = v]. The two components
Π1(t, f, v) and Π2(t, f, v) both rely on the characteristic function ϕ(u, t).

Proposition 3.2. Denote k = ln(G/f), then we have

Π1(T − t, f, v) =
1

2
− 1

π

∫ ∞
0

<
[
e−iukϕ(u, t)

iu

]
du, (19)

Π2(T − t, f, v) = ϕ(−i, t)
[

1

2
− 1

π

∫ ∞
0

<
[
e−iukϕ(u− i, t)
iuϕ(−i, t)

]
du

]
. (20)

The proof of Proposition 3.2 can be found in Appendix B.

3.1.3 Fair fee structure

A fair fee structure for a VA guarantee is set such that, at t = 0, the risk-neutral value
of the total income to the insurer is equal to that of the guarantee (the insurer’s total
outflow).

Definition 3.1. A fair fee structure is a pair (c̄∗,m∗) that satisfies

E

[∫ T

0

e−rucuF
(c̄,m)
u du

]
= Π(c̄,m)(T, F0, V0), (21)

where we add the superscript (c̄, m) to highlight the dependence of Ft and of the value of
the guarantee on the fee structure.

Recall that the rate of total fees ctotu is shared between the investment manager and
the insurer. Thus we only include the rider fees on the left-hand side of (21). Note that
the fair fee structure is not unique, since the fee structure is described by two parameters,
c̄ and m. However, for fixed c̄, there exists at most one fair m, and for a fixed m, there is
at most one fair c̄. Throughout this paper, we will use the asterisk superscript to indicate
a fair fee couple (c̄∗,m∗) satisfying (21).

The result presented in the following proposition shows that the left-hand side of (21)
can be written as a deterministic integral in one dimension.

Proposition 3.3. The risk-neutral value of the rider fees conditional on Ft, 0 6 t 6 T ,
can be expressed by

Et

[∫ T

t

e−r(u−t)cuFudu

]
= Ft − e−r(T−t)ϕ(−i, t;T )− cinv

∫ T

t

e−r(u−t)ϕ(−i, t;u)du. (22)

The proof of Proposition 3.3 can be found in Appendix C.
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Remark 3.3. The presence of the investment management fee, cinv, complicates the cal-
culation of the fee income to the insurer. When cinv = 0, the value of the fee income is
linked to the current value of the fund and the discounted expectation of its final value (see
Liu (2010) for more details). However, when cinv > 0, this equivalence breaks down and
the value of the fee income becomes path-dependent. In such a situation, the distribution
of the whole path of the fund is required. In our setting, this results in the addition of
the last term on the right-hand side of (22). This involves the distribution of Fu, which
is represented by its characteristic function evaluated at −i, at all times between t and
T . It follows that with investment management fees, the calculation of the fee income
requires multiple evaluations of the characteristic function, as well as additional numerical
integration.

3.2 Greeks of the GMMB

Variable annuity writers usually develop hedging programs to mitigate the risks embedded
in VA riders. In particular, Greeks-based methods developed to hedge derivatives are often
used to manage financial market risk, because many VA riders can be viewed as long-
dated options. Due to the complexity of product designs, practitioners often use Monte
Carlo simulations to estimate the Greeks, which can be extremely time-consuming, and
somewhat inaccurate because of sampling errors and biases. In this section, we derive
expressions for commonly used Greeks of the GMMB with a VIX-linked fee structure.

In practice, the delta of an option is defined as the rate of change of the option value
with respect to changes in the underlying asset price, with everything else including time
and volatility being fixed. When working with guarantees written on the underlying VA
account, this definition of delta poses a challenge, because the no-arbitrage cost at time
t of the GMMB depends on St only through Ft (see Proposition 3.2). Recall that the
instantaneous change in Ft is attributable to (1) equity-linked financial returns Ft(dSt/St)
due to changes in the underlying equity index and (2) the collection of fee income ctdt due
to the passage of time, i.e. we have

dFt
Ft

=
dSt
St
− ctott dt.

Recall that in the original definition of delta, the time parameter is considered as a fixed
parameter. To eliminate the time effect on the changes of Ft, we have to interpret changes
in the fund value F due to changes in the equity index S as

dF/F = dS/S, or equivalently dF/dS = F/S.

With this motivation, we define the delta of the GMMB rider as

∆M
t :=

Ft
St

∂Π

∂f
(T − t, Ft, Vt). (23)
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The vega of an option is the rate of change of its value with respect to changes in the
instantaneous volatility Vt. It is of particular interest to our setting, because the VIX-
linked fee structure aims at reducing the sensitivity of the liabilities to changes in the
volatility. The vega of the GMMB guarantee is defined as

VMt :=
∂Π

∂v
(T − t, Ft, Vt). (24)

The rho of an option is the rate of change of its value with respect to changes in the
risk-free interest rate r. It is of particular importance since most variable annuity contracts
are long-term contracts. The rho of the GMMB guarantee is defined as

RM
t :=

∂Π

∂r
(T − t, Ft, Vt). (25)

We can then use (18) and Proposition 3.2 to obtain expressions for the Greeks of the
GMMB guarantee.

Corollary 3.1. The delta of the GMMB guarantee is given by

∆M
t =

Fte
−r(T−t)

St

[
G
∂Π1

∂f
(T − t, Ft, Vt)− Π2(T − t, Ft, Vt)− Ft

∂Π2

∂f
(T − t, Ft, Vt)

]
,

where

∂Π1(T − t, f, v)

∂f
=

1

−πf

∫ ∞
0

<
[
e−iukϕ(u, t)

]
du,

∂Π2(T − t, f, v)

∂f
=

1

−πf

∫ ∞
0

<
[
e−iukϕ(u− i, t)

]
du.

The vega is given by

VMt =
Fte
−r(T−t)

St

[
G
∂Π1

∂v
(T − t, Ft, Vt)− Ft

∂Π2

∂v
(T − t, Ft, Vt)

]
,

where

∂Π1(T − t, f, v)

∂v
=
−1

π

∫ ∞
0

<
[
e−iukϕv(u, t)

iu

]
du,

∂Π2(T − t, f, v)

∂v
= ϕv(−i, t)

{
1

2
− 1

π

∫ ∞
0

<
[
e−iukϕ(u− i, t)

iuϕ(−i)

]
du

+ ϕ(−i, t)
(
− 1

π

∫ ∞
0

<
[
e−iuk(ϕv(u− i, t)ϕ(−i, t)− ϕ(u− i, t)ϕv(−i, t))

(ϕ(−i, t))2

]
du

)}
,

and

ϕv(u, t) = ϕ(u, t)
q(u)

σ2

(
1− e−d(u)(T−t)

1− g(u)e−d(u)(T−t)

)
. (26)
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The rho is given by

RM
t = −(T − t)Π(T − t, Ft, Vt) + e−r(T−t)

[
G
∂Π1

∂r
(T − t, Ft, Vt)− Ft

∂Π2

∂r
(T − t, Ft, Vt)

]
,

where

∂Π1(T − t, f, v)

∂r
=
−1

π

∫ ∞
0

<
[
e−iukϕr(u, t)

iu

]
du,

∂Π2(T − t, f, v)

∂r
= ϕr(−i, t)

{
1

2
− 1

π

∫ ∞
0

<
[
e−iukϕ(u− i)
iuϕ(−i, t)

]
du

+ ϕ(−i, t)
(
− 1

π

∫ ∞
0

<
[
e−iuk(ϕr(u− i, t)ϕ(−i, t)− ϕ(u− i, t)ϕr(−i, t))

(ϕ(−i, t))2

]
du

)}
,

and ϕr(u, t) = (iu(T − t))ϕ(u, t).

3.3 Greeks of the net liability of the GMMB

The previous section considers the sensitivity of the insurer’s GMMB gross liability; it
only takes into account its future payouts. However, one has to be reminded that, unlike
exchange-traded options, the GMMB rider is compensated by a stream of fee income,
which helps cover the cost of the gross liability. There are at least two problems with
merely hedging the gross liability. Some discussion of gross and net liabilities can be
found in Feng and Volkmer (2012).

1. The financial risk affects both the gross liability and the fee income. A hedging
program developed only for the gross liability overlooks the uncertainty from the
income side.

2. In most cases, small GMMB rider payouts can be covered by the accumulated fee
income, leading to a profit for the insurer. However, a hedging program developed for
the gross liability would completely eliminate even these small payouts. In that case,
such an offset would be considered excessive. This indicates that a hedging program
that does not take fee income into consideration is more costly than necessary.

For a prudent risk management strategy, the insurer should hedge its net liability, defined
as the difference between the gross liability (the GMMB benefit) and the fee income coming
from the rider part of the total fee:

ΠNet(T − t, Ft, Vt) := Π(T − t, Ft, Vt)− Et
[∫ T

t

e−r(u−t)cuFudu

]
. (27)

As explained in Section 3.1.3, the investment management fee cinv increases the com-
plexity of the computation of the fee income to the insurer.
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Using Proposition 3.3, we can write the net liability as

ΠNet(T − t, Ft, Vt) = Π(T − t, Ft, Vt)− Ft + e−r(T−t)ϕ(−i, t;T ) + cinv
∫ T

t

e−r(u−t)ϕ(−i, t;u) du.

(28)

Corollary 3.2. The delta, vega and rho of the net liability, defined as

∆Net
t :=

Ft
St

∂ΠNet

∂f
(T − t, Ft, Vt),

VNet
t :=

∂ΠNet

∂v
(T − t, Ft, Vt),

RNet
t :=

∂ΠNet

∂r
(T − t, Ft, Vt)

are given by

∆Net
t = ∆M

t −
Ft
St

+
e−r(T−t)

St
ϕ(−i, t;T ) +

cinv

St

∫ T

t

e−r(u−t)ϕ(−i, t;u) du,

VNet
t = VMt + e−r(T−t)ϕv(−i, t;T ) + cinv

∫ T

t

e−r(u−t)ϕv(−i, t;u) du

RNet
t = RM

t ,

where ϕv(·) is defined in (26).

Proof. The results follow from the definition of ΠNet(T − t, Ft, Vt) in (28). Note
that the second part of (28) does not depend on the risk-free interest rate r because
e−r(T−t)ϕ(−i, t;T ) does not depend on r, thus RNet

t = RM
t holds. This completes the

proof.

4 Numerical results

In this section, we use numerical examples to illustrate the effect of the VIX-linked fee on
the insurer’s GMMB liabilities. First, we analyze various combinations of fair VIX-linked
fees using formulas developed in Section 3. We then illustrate the effect of the VIX-linked
fee structure on current and future liabilities.

4.1 Market and VA assumptions

In order to present useful numerical results, we need an accurate and recent calibration
of the Heston model. For the purposes of this paper, a joint P−measure and Q−measure
calibration would be ideal, since we use both measures to obtain relevant numerical results.
Such a joint calibration of the Heston model is challenging and the literature on the topic
is sparse. The methods developed for such an estimation are often complex and/or require
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high-frequency data. For example, Garcia, Lewis, Pastorello, and Renault (2011) use
5-minute returns and daily option data over 10 years.

One-factor stochastic volatility models such as the Heston model do not typically pro-
vide a very good fit to equity index data. At least two factors, or jumps, are needed to ade-
quately reproduce market features (see Garcia, Lewis, Pastorello, and Renault (2011) and
references therein). Nonetheless, the Heston model is used here for its analytic tractability.
It allows for faster calculations and is sufficient to replicate the general tendencies of the
market. We use the Heston model to assess the influence of the VIX-linked fee on VA lia-
bilities, in the same mindset that the Black-Scholes model, a simplification of actual equity
index dynamics, was considered in MacKay, Augustyniak, Bernard, and Hardy (2015).

For the numerical examples presented later in this section, we use a parameter set
available in the literature. The one we choose is obtained in Guillaume and Schoutens
(2010). Although it is only fitted to option prices (thus resulting in a Q-measure parameter
set), it has the advantage of using relatively recent dataf. For the purpose of calculations
under the real-world measure, we select equity and volatility risk premium parameters
that lead to reasonable market dynamics. Since we recognize that the parameters chosen
may not fit market data perfectly, we test the sensitivity of our results to the volatility
risk premium parameter λ.

Thus, throughout this section, unless otherwise indicated, we use the parameters in
Table 1, obtained by Guillaume and Schoutens (2010).

Parameter Value
κ 0.5780
V̄ 0.0518
V0 0.0225
σ 0.2446
ρ -0.8872

Table 1: Market Parameters

In addition, we assume r = 0.02 and µ = 0.04. To obtain P−measure parameters for
the process Vt, we assumeg λ = −0.25, which gives κ∗ = 0.828 and V̄ ∗ = 0.0362. The
parameter λ is chosen to obtain realistic values for κ∗ and V̄ ∗, and it is negative following
evidence presented in Bakshi and Kapadia (2003). In Section 4.4, we study the sensitivity
of our results to λ to assess the effect of this assumption. Unless otherwise indicated, we
consider a GMMB with the specifications given in Table 2:

In Table 2, δ is the guaranteed roll-up rate, and is generally assumed to be less than
r. The value we choose for the investment fund management fee, cinv, is motivated by

fThe parameters we use are from Guillaume and Schoutens (2010)’s full calibration to S&P500 option
prices as of 18/07/2007.

gIn comparison, Aı̈t-Sahalia and Kimmel (2007) obtain κ∗ = 5.07 and V̄ ∗ = 0.0457, while Garcia,
Lewis, Pastorello, and Renault (2011) get κ∗ = 0.173 and V̄ ∗ = 0.809. Our κ∗ falls between these two
calibrations, while our V̄ ∗ is close to the first one.
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Parameter Value
F0 100
T 10
G F0e

δT

cinv 0.0075

Table 2: VA Parameters

recent data on average expense ratios for mutual funds in the United States.h In the next
section, we perform sensitivity tests to assess the effect of this parameter on the fair fee
rates.

4.2 Fair fee

In this section, we study fair fee structures, as defined by (21) in Section 3. We show that
for a fair fee couple (c̄∗,m∗), a lower base fee c̄∗ is associated with a higher multiplier m∗.

4.2.1 Fair c̄ for fixed m

Figure 1 illustrates the present value of the financial guarantee and of the total fee income
as a function of the base fee c̄ for fixed values m = 0 and m = 0.25, when the investment
fund management fee rate is 0.75%. Note that m = 0 is equivalent to the fixed percentage
fee case. For a given value of m, the fair base fee rate c̄∗ is the value at which both curves
intersect. While both values depend on the fee rate, the fee income increases significantly
with m, leading to a lower fair base fee rate c̄∗. This is intuitive: when a part of the
rider fee income is based on the VIX, the base fee can be lower than when the fee rate is
constant, and result in a similar income.

Table 3 presents the fair base fee c̄∗ for different values of m and cinv. As expected,
for a fixed multiplier m and investment fund fee cinv, the fair base fee increases with the
guaranteed roll-up rate δ. The fair base fee c̄∗ is a decreasing function of the multiplier m.
Thus, as the VIX-linked part of the rider fee increases, the fixed part of the rider fee does
not need to be as high for the guarantee to be covered.

The investment fund management fee has a significant impact on the fair fee structure.
As cinv increases, the base fee rate c̄∗ must also increase to fund the financial guarantee.
Indeed, the investment fund fee reduces the total return on the VA account, which in turn
increases the value of the VA financial guarantee. The latter must be financed by a higher
rider fee. The results of Table 3 show that this is particularly true for higher guaranteed
roll-up rates δ. Therefore, insurers must pay particular attention to management fees
when selecting the investment choices offered to the policyholder.

hData found at /www.ici.org/pressroom/news/16_news_trends_expenses.
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Figure 1: Expected present value of the financial guarantee for δ = 0 and the rider fee
income as a function of c̄, with cinv = 0.75%.

m = 0 m = 0.15 m = 0.30 m = 0.45
cinv = 0%

δ = 0.0% 2.2613% 1.8026% 1.2938% 0.7361%
δ = 0.5% 2.7544% 2.3032% 1.7899% 1.2191%
δ = 1.0% 3.4564% 3.0133% 2.4908% 1.9002%

cinv = 0.5%
δ = 0.0% 2.6243% 2.1695% 1.6569% 1.0905%
δ = 0.5% 3.2584% 2.8104% 2.2902% 1.7071%
δ = 1.0% 4.2451% 3.8030% 3.2670% 2.6574%

cinv = 0.75%
δ = 0.0% 2.8389% 2.3856% 1.8704% 1.2990%
δ = 0.5% 3.5706% 3.1234% 2.5985% 2.0082%
δ = 1.0% 4.7921% 4.3478% 3.8021% 3.1815%

cinv = 1.00%
δ = 0.0% 3.0817% 2.6295% 2.1111% 1.5343%
δ = 0.5% 3.9400% 3.4926% 2.9618% 2.3637%
δ = 1.0% 5.5292% 5.0782% 4.5203% 3.8898%

Table 3: Fair base fee c̄∗.

4.2.2 Fair m for fixed c̄

In this section we solve for the fair multiplier m∗ for different values of the base fee c̄.
Figure 2 shows that the present value of the financial guarantee and the fee income are
both increasing functions of m. Indeed, a higher m translates into a higher fee, which in
turn depletes the underlying fund faster and increases the value of the guarantee.
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Figure 2: Expected present value of the financial guarantee for δ = 0 and the rider fee
income as a function of m, with cinv = 0.75%.

Table 4 presents the fair multiplier m∗ for different values of δ and c̄, when cinv = 0.75%.
Note that for δ fixed, if we set c̄ higher than the fair fee rate c̄∗ for m = 0 (see the second
column of Table 3), the fair multiplier m does not exist. In fact, the curves would intersect
at m∗ < 0, but we only allow positive values for the multiplier m.

δ c̄ = 0.25% c̄ = 0.75% c̄ = 1.25% c̄ = 1.75% c̄ = 2.25%
0.0% 0.6985 0.5834 0.4623 0.3328 0.1912
0.5% 0.8411 0.7353 0.6259 0.5116 0.3903
1.0% 1.0577 0.9598 0.8604 0.7589 0.6548

Table 4: Fair multiplier m∗ for different values of c̄, with cinv = 0.75%.

The fair VIX-linked fee rates for δ = 0 are presented in Table 5 for different values of
Vt. Note that Vt = 0.15 (the last row) gives

√
Vt = 0.3873, which is a level of volatility

reached during the most recent financial crisisi. At this level, the rider fee rate becomes
very high as soon as it is linked to the VIX index, even when the multiplier is as low as 0.2
(second to last column of Table 5). This motivates a potential cap on the rider fee rate,
to keep the product marketable and to reduce the fee drag (i.e. the negative net return on
the VA account resulting from a high fee) that could happen in periods of high volatility.

m∗ 0.6985 0.5834 0.4623 0.3328 0.1912 0.0000
c̄∗ (in %) 0.25 0.75 1.25 1.75 2.25 2.84

Vt = 0.0100 1.02 1.39 1.75 2.12 2.46 2.84
Vt = 0.0225 1.86 2.10 2.32 2.52 2.69 2.84
Vt = 0.0500 3.75 3.67 3.56 3.42 3.21 2.84
Vt = 0.1500 10.57 9.68 8.08 6.67 5.07 2.84

Table 5: Fair fee rates ct (in %), δ = 0.

iSee historical VIX data at https://fred.stlouisfed.org/series/VIXCLS/.
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In the subsequent sections, we only consider quantities linked to fairly priced VA poli-
cies. In other words, the fee parameters (c̄, m) that we consider are always fair. To simplify
the notation, we drop the asterisk superscript going forward.

4.3 Effect of the VIX-linked fee on the net liability

4.3.1 Sensitivity of the net liability to Vt

The main objective of the VIX-linked rider fee is to reduce the riskiness of insurers’ VA
liabilities. In particular, it should reduce the sensitivity of the net liability, when compared
to the constant fee rate structure. In this section, we provide a numerical example to
analyze the sensitivity of the net liability to the instantaneous volatility.

Recall that the net liability, ΠNet
t (T − t, Ft, Vt), defined in (27), takes into account the

value of the future fee income. Going forward, we will shorten the notation and denote
the net liability at t by ΠNet

t . We consider the same contract as in the previous sections
(T = 10, δ = 0, cinv = 0.75%) and plot the net liability ΠNet

t at different times during
the life of the contract (t ∈ {0, 2, 8}) for various account values (Ft ∈ {80, 100, 120}). For
t = 0, we only study the case F0 = 100, because we assume that the contract starts at the
money. We compare the net liability under different fee structures, namely the fixed fair
fee rate ((c̄, m) = (2.8389%, 0)) and the VIX-linked fair fee rates given in Table 4.

Figure 3 presents the net liability at inception of the VA contract for different values
of V0 and for different fee structures. Recall that any fair fee structure satisfies Definition
3.1, which equivalently means that the net liability at inception is equal to 0, with the
model assumptions in Table 1. Hence, the net liability is 0 for any fair fee structure
when V0 = 0.0225. Figure 3 shows that when the rider fee is strongly linked to the VIX
((c̄, m) = (0.25%, 0.6985)), the net liability barely increases with V0. Furthermore, as the
base fee c̄ increases, so does the slope of the net liability with respect to V0. In other words,
as the rider fee’s dependence on the VIX decreases (or when c̄ is lower), the sensitivity of
the net liability to changes in the instantaneous volatility increases. This observation is in
line with the proxy liability analysis made using historical observations in the second part
of the white paper (CBOE, 2013b, (Figure 1 on page 6)).

Figure 4 shows that for all combinations of time to maturity and account values under
consideration, a lower c̄, associated with a higher fee multiplier m (see Table 4), reduces
the sensitivity of the net liability ΠNet

t to the instantaneous volatility Vt. This effect is more
pronounced when the guarantee is out of the money (Ft > G), but can also be observed for
lower values of Ft. In particular, if the value of the VA account Ft increases significantly
shortly after the inception of the contract, a VIX-linked fee can cause the net liability to
decrease as Vt increases (see Figure 4(c)). In such a situation, the value of the GMMB is
close to zero, and a higher volatility only has a significant impact on the rider fee income.

Compared to other fair fee structures, a higher multiplier m leads to a smaller net
liability for higher volatility Vt, since it better matches the liability with future fee income.
In fact, a higher instantaneous volatility causes the liability to increase. When the rider
fee rate is linked to the VIX, the fee income also increases. Thus, Figure 4 confirms the
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CBOE claim that such a fee “reduce[s] the impact of implied volatility changes on reserve
and capital costs” (CBOE 2013a, page 2).
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Figure 3: Net liability for fixed and VIX-linked fees, t = 0.
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(a) F2 = 80, t = 2
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(b) F2 = 100, t = 2
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(c) F2 = 120, t = 2
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(d) F8 = 80, t = 8
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Figure 4: Net liability for fixed and VIX-linked fees, t = 2 and t = 8.
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4.3.2 Alignment of the net liability and the fee income

Here we present a numerical example that illustrates the improved alignment of the fee
income with the net liability under the VIX-linked fee structure. We consider the same
contract as in the previous example (T = 10, δ = 0, cinv = 0.75%). We simulate a path
of the VA account value and the associated instantaneous volatility process for a 10-year
period, using the model presented in Section 2.4 and the parameters given at the beginning
of this section.

To obtain the discretized path, we use the drift interpolation approximation to Broadie
and Kaya (2006)’s exact scheme (see van Haastrecht and Pelsser (2010)) and consider 200
steps per year. For each time point tj = j

200
, with j ∈ {0, . . . , 200}, we calculate the

net liability and the annualized fee income using the simulated account value F̃tj and

instantaneous volatility Ṽtj . The net liability is obtained using (27), while the annualized

fee income is simply given by ctj F̃tj .
The resulting paths of net liability and fee income for fixed percentage and VIX-

linked fee structures are presented in Figure 5. When the fee is set as a fixed percentage
(m = 0), the fee amount is negatively correlated with the net liability. In particular,
the fee amount collected is at its lowest when the liability is high, which is problematic
from a risk management point of view. In comparison, the VIX-linked fee structure with
m = 0.6985 leads to a better alignment of the fee income and the net liability, with the
fee income increasing with the liabilities.
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(a) c̄ = 2.26%,m = 0 (fixed percentage fee)
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Figure 5: Net liability and annualized fee income for a simulated VA contract.
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4.4 Effect of the VIX-linked fee on the future net liability

In this section, we analyze the effect of the VIX-linked fee rider on the real-world distri-
bution of the insurer’s future net liability. In particular, we are interested in the one-year
ahead liability, which can be used to predict the insurer’s financial position in one year. We
show that, when re-calibration of the model results in a higher long-term mean V̄ for the
variance process, the VIX-linked fee leads to a significant reduction in the expected future
net liability. However, in general, the effect of the VIX-linked fee on the distribution of the
one-year ahead liability is not as pronounced. Information on the one-year-ahead liability
is of interest in the insurance industry, as it can be used for internal risk management
purposes, and is also relevant to regulators for solvency purposes.

The analysis conducted in this section is analogous to the“Stochastic Results”presented
in Figures 7 and 8, on page 12 of the CBOE white paper (2013b), which uses an“illustrative
set of real-world stochastic scenarios to project one year”. They compare VA contracts
with constant and VIX-linked fee rates. Their results indicate that the distribution of the
one-year ahead liability of a VA with VIX-linked fees has lower standard deviation and
99.5% VaR. The methodology behind this analysis is not detailed, but our goal here is to
mirror these results through the real-world distribution of the one-year ahead net liability
calculated using the model developed in Section 2.1.

To obtain the P-distribution of the future net liability, we use the dynamics of the
account value under the real-world measure, as presented in Section 2.4. We are then
interested in the distribution of ΠNet

t+1 conditional on Ft.
An empirical estimate of the distribution of the future net liability is obtained by

simulating M = 10, 000 paths of the account value and of the volatility process up to time
t + 1. Again, the simulations are performed using the drift interpolation approximation
to Broadie and Kaya’s exact scheme (see van Haastrecht and Pelsser (2010)). We denote

the resulting simulated account values and instantaneous volatilities by F̃
(i)
t+1 and Ṽ

(i)
t+1, for

i = 1, 2, . . . ,M . These values are then substituted in (27) to calculate the net liability
resulting from each simulated path. Note that without the formulas given in Propositions
3.1 and 3.2, this analysis would require nested simulations.

For different VIX-linked fee structure, the mean, the 95% value-at-risk (VaR95%) and
the 95% expected shortfall (ES95%) are calculated. The empirical estimates of the risk mea-
sures are obtained using the formulas given in Section 9.2 of McNeil, Frey, and Embrechts
(2015).

The VA contract we consider throughout this section is the same as in the previous ones
(T = 10, δ = 0, cinv = 0.75%). Unless otherwise indicated, we use the market parameters
given in Table 1.

In Table 6, we present estimated statistics of the one-year ahead future liability at
different times throughout the duration of the contract. Although the effect is not always
significant, our results show that the VIX-linked fee structure can increase the average
one-year ahead liability. Based on the VaR and the expected shortfall, the right tail of
the distribution of the one-year ahead liability appears thicker with the VIX-linked fee.
This means that in the worst cases, the VIX-linked fee structure increases the liabilities.
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This is due to the fact that when the volatility becomes very high, the VIX-linked fee rate
increases (see Table 5) and drags the VA account value down. A possible solution to this
problem would be to cap the VIX-linked fee rate, as is done in practice. However, with
such a cap, closed form expressions for the expected fund value and the liabilities might
be impossible to derive. Further work should nonetheless consider fee caps.

m 0.6985 0.5834 0.4623 0.3328 0.1912 0.0000
c̄ (in %) 0.25 0.75 1.25 1.75 2.25 2.84

t = 0

ÊP [ΠNet
t+1|A

]
1.59 1.59 1.59 1.59 1.60 1.60

V̂aR95% 19.74 19.86 19.99 20.06 20.07 20.03

ÊS95% 26.96 26.96 26.96 26.95 26.91 26.79

t = 5

ÊP [ΠNet
t+1|A

]
6.73 6.55 6.37 6.19 6.02 5.84

V̂aR95% 25.16 25.16 25.15 25.07 24.98 24.80

ÊS95% 33.07 32.99 32.88 32.76 32.60 32.34

t = 8

ÊP [ΠNet
t+1|A

]
7.03 6.92 6.81 6.70 6.58 6.43

V̂aR95% 28.16 28.12 28.09 27.97 27.87 27.61

ÊS95% 37.01 36.87 36.71 36.53 36.29 35.93

Table 6: Mean, VaR and ES of future net liabilities, A = {Ft = 100, Vt = 0.0225}.

4.4.1 Sensitivity of the results to key parameters

Sensitivity to V̄
Figure 4 shows that when Vt is sufficiently high, the VIX-linked fee generally leads to

a lower net liability. Therefore, one might expect that the tail risk measures presented
in Table 6 decrease with c̄. In other words, a rider fee that is more strongly linked to
the VIX should improve the insurer’s financial situation in the worst-case scenarios, since
those usually occur when market volatility is high. However, the results presented in Table
6 do not confirm this intuition. Instead, the tail risk measures of the one-year-ahead net
liability is lower when the fee rate is constant (m = 0). Further analysis show that this
is due to the particular parameter set we are using. It describes a market where Vt stays
relatively low, and therefore the simulated values Ṽ

(i)
t+τ very rarely reach the level where

the VIX-linked fee has a significant impact. For this reason, the effect of the VIX-linked
rider fee on the distribution of the one-year-ahead liability is less obvious.

To assess the impact of the VIX-fee in different volatility regimes, we now carry out
the test using different values V̄ , which is the parameter linked to the long-term mean
of the variance process. Higher values of V̄ will lead to higher simulated instantaneous
volatilities at time t + 1, and will show the effect of the VIX-linked fee structure when
the long-term market volatility changes. It is important to note here that we perform the
analysis using the fair fee couples obtained for our original value V̄ = 0.0518.
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The results are presented in Table 7. For V̄ = 0.08, the reduction of the expected
value of the one-year-ahead liability caused by the VIX-linked fee structure is clear. This
means that if the VA contract is priced in a relatively low volatility environment, and that
a later model re-calibration results in a higher V̄ , the VIX-linked fee structure helps to
keep the net liability low. The opposite is true if the re-calibrated V̄ drops; in that case,
the VIX-linked fee structure leads to a liability higher than that in the fixed percentage
fee case. This is explained by Figures 3 and 4, which show that for low values of Vt, the
net liability with VIX-linked fee becomes higher than its counterpart with the constant
rider fee. In fact, low volatility reduces the fee income when the fee structure is linked
to the VIX. Nonetheless, regardless of the fee structure, the future net liability is reduced
when V̄ is low.

In summary, this last numerical example shows that the VIX-linked fee structure makes
the future liability less sensitive to re-calibration of the long-term volatility term. In other
words, under the VIX-linked fee structure, the distribution of the one-year-ahead liability
is less affected when the volatility of the underlying index undergoes a long-term change.

m 0.6985 0.5834 0.4623 0.3328 0.1912 0.0000
c̄ (in %) 0.25 0.75 1.25 1.75 2.25 2.84

V̄ = 0.03

ÊP
[
ΠNet
t+1|A

]
5.79 5.09 4.43 3.81 3.22 2.57

V̂aR95% 22.87 22.71 22.65 22.51 22.29 22.02

ÊS95% 31.64 31.52 31.39 31.23 30.03 30.72

V̄ = 0.08

ÊP
[
ΠNet
t+1|A

]
7.13 7.55 7.94 8.33 8.71 9.17

V̂aR95% 27.93 27.95 28.01 28.05 28.14 28.23

ÊS95% 35.68 35.64 35.60 35.55 35.48 35.34

Table 7: Mean, VaR and ES of future net liabilities at t = 5, A = {Ft = 100, Vt = 0.0225}
.

Sensitivity to κ∗

In the literature, different calibrations of the Heston model lead to very different values
for certain parameters. For example, Aı̈t-Sahalia and Kimmel (2007) obtain κ∗ = 5.07
for the speed of mean reversion parameter. This is significantly higher than the value
we used in the previous numerical analysis (under the assumption λ = −0.25, we have
κ∗ = 0.828). It should be noted, however, that Aı̈t-Sahalia and Kimmel (2007) use the
arbitrary assumption λ = 0. Nonetheless, this important difference in the value of the
parameter motivates sensitivity analysis. In fact, a high speed of mean-reversion could
reduce the efficacy of the VIX-linked fee by making the changes in the volatility only
transitory.

Keeping all other parameters as in Table 1, we set κ∗ = 2.5 and κ∗ = 4.5, each time
with λ = 0 (which yields V̄ = 0.0518) and re-calculate the fair fee structure for different
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values of c̄. Different statistics pertaining to the resulting distribution of the one-year
ahead net liabilities are presented in Table 8.

κ∗ = 2.5

m 0.6635 0.5735 0.4812 0.3863 0.2882 0.0000
c̄ (in %) 0.25 0.75 1.25 1.75 2.25 3.61

ÊP [ΠNet
t+1|A

]
8.32 8.29 8.26 8.23 8.20 8.14

V̂aR95% 29.88 29.86 29.86 29.82 29.76 29.54

ÊS95% 36.94 36.90 36.84 36.77 36.70 36.43

κ∗ = 4.5

m 0.6554 0.5683 0.4794 0.3884 0.2950 0.0000
c̄ (in %) 0.25 0.75 1.25 1.75 2.25 3.73

ÊP [ΠNet
t+1|A

]
8.51 8.49 8.47 8.46 8.44 8.42

V̂aR95% 29.77 29.77 29.75 29.75 29.72 29.55

ÊS95% 36.13 36.11 36.08 36.05 36.01 35.82

Table 8: Mean, VaR and ES of future net liabilities, t = 5, λ = 0,
A = {Ft = 100, Vt = 0.0225}.

A first observation is that, compared to the original parameter set, corresponding values
of the fair multiplier, m, are lower for low values of c̄, but do not decrease as quickly as
values of c̄ increase. It follows that, both when κ∗ = 2.5 and κ∗ = 4.5, the fair fixed fee
rate is higher than in the original parameter set.

While the overall level of the future liabilities is higher with the new parameter set, the
distribution of the one-year ahead net liability becomes slightly less sensitive to changes
with fee structures as κ∗ increases. Lower liabilities are however still observed when the
fee rate is fixed.

The parameter κ∗ is linked to the speed of mean reversion of the volatility. As κ∗

increases, changes in the volatility are more transitory and can have less impact on the
distribution of the future net liability. It follows that the impact of the VIX-linked fee is
also less significant when κ∗ is higher.

Sensitivity to ρ
One of the motivations for the VIX-linked fee is the negative correlation between the

volatility of the S&P500 and its value. Market data shows that this measure is unstable
through time (see for example Shu and Zhang (2012); Whaley (2009)), which the Heston
model fails to take into account. For this reason, it is important to assess the effect of our
assumption for the parameter ρ.

Table 9 shows quantities linked to the distribution of the one-year ahead net liability
when ρ = −0.35, which translates into a weaker correlation between the stock index value
and its volatility. The rider fee parameters (c̄, m) are re-calculated so that the fee structure
is fair. The results show that the impact of the VIX-linked fee structure on the distribution
of the future net liabilities is reduced when the correlation between the stock index value
and its volatility is weaker.
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m 0.6394 0.5420 0.4420 0.3387 0.2312 0.0000
c̄ (in %) 0.25 0.75 1.25 1.75 2.25 3.25

ÊP [ΠNet
t+1|A

]
6.53 6.46 6.40 6.34 6.30 6.22

V̂aR95% 23.65 23.71 23.77 23.82 23.85 23.98

ÊS95% 30.10 30.15 30.20 30.24 30.28 30.34

Table 9: Mean, VaR and ES of future net liabilities, t = 5, ρ = −0.35,
A = {Ft = 100, Vt = 0.0225}.

Other parameters
Further sensitivity tests with respect to the underlying fund value Ft and the volatility

risk premium parameter λ have been conducted. The results are presented in Tables A1
and A2 in Appendix D. They agree with the previous findings.

The results in Table A1 show that when the guarantee is out of the money (Ft = 120),
the VIX-linked fee structure can significantly reduce possible profits. This is linked to the
misalignment between the fee income and the value of the guarantee. When the latter
decreases, the former increases and leads to profits. By reducing the discrepancy between
the two quantities, the VIX-linked fee can cut down on the profits.

The absolute value of λ is linked to the magnitude of the volatility risk premium. The
results in Table A2 show that a higher volatility risk premium makes the mean of the
future net liability more sensitive to changes in the fee structure. When comparing the
case c̄ = 0.25% to the constant fee rate case (m = 0), the mean of the net liability increases
by almost 18% when λ = −1.5. The same comparison shows an increase of around 10%
when λ = 0.5 and λ = −0.5. The volatility risk premium has an opposite effect on the tail
of the distribution of the future net liability. That is, the sensitivity of tail risk measures
to changes in the fee structure (constant or VIX-linked fee) decreases when |λ| increases.

5 Conclusion and Future Research

In this paper, we introduced an analytic framework for modeling the VIX-linked fee struc-
ture for variable annuities. In particular, the joint evolution of the equity index and the
VIX is modeled by the Heston stochastic volatility model, under which the new fee struc-
ture leads to the formulation of a new Heston-like model. We developed a closed-form
solution to the characteristic function of the log fund value. We also presented expressions
for risk-neutral values of the GMMB rider and the Greeks of the associated net liability.
We illustrated with numerical examples the effect of the new fee structure on the net
liability and on the fee income. Here is a summary of the paper’s findings.

1. We show in Section 4.3.1 that with a VIX-linked rider fee, the current net liability
of the guarantee is less sensitive to the instantaneous market volatility Vt than when
the rider fee is constant. This is in line with Figure 1 of the second part of the CBOE
white paper (2013b), which suggests that the insurer’s liability under the VIX-linked
fee structure is less affected by changes in market volatility, when compared to fixed
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percentage fees. This reduced sensitivity, when combined with the new fee structure,
can help re-align the fee income with the value of benefit guarantees. We give an
example of this improved alignment in Section 4.3.2. One may argue that the VIX-
linked fee leads to a more prudent risk management practice, as the income is more
likely to cover the liabilities and the higher cost of hedging when market volatility
increases.

2. Our numerical examples also demonstrate that a VIX-linked rider fee also reduces
the sensitivity of the distribution of the one-year ahead net liability to changes in
the long-term mean of the volatility. When compared to the constant rider fee case,
this translates into a lower expected future liability when V̄ is increased. However, a
lower sensitivity also means that the VIX-linked expected future liability decreases
less when V̄ drops. Therefore, the VIX-linked fee structure reduces the loss of the
insurer when a model re-calibration increases V̄ , at the cost of reducing its profits
when long-term market volatility goes down. The VIX-linked fee structure thus
appears to be beneficial in terms of protecting the insurer in case of an increase in
long-term market volatility.

3. Our numerical results show that, when market volatility becomes very high, the
VIX-linked fee can pull the total return of the VA account down. In the worst
cases, this can worsen the insurer’s financial position, even with the protection that
the VIX-linked fee should provide. For this reason, further research should explore
caps on the VIX-linked fee. This might reduce the fee drag in extreme cases while
providing the re-alignment of the fee income to the value of the guarantee.

As alluded to in the introduction, the current common practice of fixed fee structure
can lead to the unintended consequence of adverse selection, where policyholders tend
to keep their contract in times of market turmoil, and to surrender under stable market
conditions. In addition to increasing the robustness of the net liability to changes in market
volatility, the proposed VIX-linked fee structure should reduce the incentive to surrender.
While we have analyzed the impact of fee structures on overall insurance liabilities from
the insurer’s point of view, we have not investigated whether the VIX-linked fee structure
can indeed reduce or eliminate adverse selection. Future work should explore whether the
VIX-linked fee structure has a significant impact on policyholders’ incentives to surrender
under various market conditions. The effect of capping the VIX-linked fee, or to revise it
only periodically, rather than continuously, should also be considered in future research.

Our results could also be extended to more complex guarantees, such as guaranteed
minimum withdrawal benefits. The path-dependent nature of this type of benefit increases
the complexity of the derivations and calls for Asian-option style approximations. The
performance of the VIX-linked fee structure should also be assessed in more realistic market
models, in particular in the presence of jumps in the volatility process (see for example
Park (2016)).
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A Proof of Proposition 3.1

Proof. Without loss of generality, we consider the case t = 0 in this proof for nota-
tional brevity. From the Cholesky decomposition, we have W

(1)
t = ρW

(2)
t +

√
1− ρ2W

(3)
t ,

where W
(2)
t and W

(3)
t are independent standard Brownian motions, and ρ is the correlation

coefficient. Integrating both sides of the variance process in (11) from 0 to T gives∫ T

0

√
VtdW

(2)
t =

VT − V0 − κV̄ T + κ
∫ T

0
Vtdt

σ
. (29)

Let γ := β − V̄ α, and from Itô’s lemma, we have

FT = F0 exp

(
(r − γ)T −

(
α +

1

2

)∫ T

0

Vtdt+ ρ

∫ T

0

√
VtdW

(2)
t +

√
1− ρ2

∫ T

0

√
VtdW

(3)
t

)
= F0 exp

(
(r − γ)T −

(
α +

1

2

)∫ T

0

Vtdt+
ρ

σ

(
VT − V0 − κV̄ T + κ

∫ T

0

Vtdt

)
+
√

1− ρ2

∫ T

0

√
VtdW

(3)
t

)
, (30)

where in the last equality we have utilized (29). Then the characteristic function of XT is
given by

E[eiuXT ] = E

[
exp

(
iu

(
ρκ

σ
− α− 1

2

)∫ T

0

Vtdt+
iuρ

σ
VT + iu

(
r − γ − ρκV̄

σ

)
T

−iuρV0

σ
+ iu

√
1− ρ2

∫ T

0

√
VtdW

(3)
t

)]
= E

[
exp

(
iu

(
ρκ

σ
− α− 1

2

)∫ T

0

Vtdt+
iuρ

σ
VT + iu

(
r − γ − ρκV̄

σ

)
T

−iuρV0

σ

)
× E

[
exp

(
iu
√

1− ρ2

∫ T

0

√
VtdW

(3)
t

)
| FVT

]]
= E

[
exp

((
iu

(
ρκ

σ
− α− 1

2

)
− (1− ρ2)u2

2

)∫ T

0

Vtdt+
iuρ

σ
VT

iu

(
r − γ − ρκV̄

σ

)
T − iuρV0

σ

)]
= e

iu
(
r−γ− ρκV̄

σ

)
T− iuρV0

σ ×

E

[
exp

((
iu

(
ρκ

σ
− α− 1

2

)
− (1− ρ2)u2

2

)∫ T

0

Vtdt+
iuρ

σ
VT

)]
, (31)

where in the third equality of (31), we have used the fact that
∫ T

0

√
VtdW

(3)
t is normally

distributed, i.e. N
(

0,
∫ T

0
Vtdt

)
, conditional on the filtration FVT . This is because W

(3)
t is

independent of FVT .
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The joint Laplace transform of VT and
∫ T

0
Vtdt can be obtained from Theorem 3.1 of

Hurd and Kuznetsov (2008) by some variable substitutions, and we have

E
[
e−η

∫ T
0 Vsds−λVT

]
= e−κV̄ vT

(
γT

γT + λ− v

) 2κV̄
σ2

× exp

(
−V0 ·

(
v +

γT (λ− v)

γT + λ− v
e−T
√
κ2+2ησ2

))
, (32)

where the auxiliary functions are defined as

v = − κ

σ2
+

1

σ2

√
κ2 + 2ησ2;

γT =
2
σ2

√
κ2 + 2ησ2

1− e−T
√
κ2+2ησ2

=
2
√
κ2 + 2ησ2

σ2(1− e−T
√
κ2+2ησ2

)
. (33)

Letting η = iu
(
α + 1

2
− ρκ

σ

)
+ (1−ρ2)u2

2
and λ = − iuρ

σ
, we can simplify

v = − κ

σ2
+

1

σ2

√
κ2 + 2ησ2

= − κ

σ2
+

1

σ2

√
κ2 + 2σ2

(
iu

(
α +

1

2
− ρκ

σ

)
+

(1− ρ2)u2

2

)
= − κ

σ2
+

1

σ2

√
(κ− iρσu)2 + σ2(i(2α + 1)u+ u2). (34)

Define d :=
√

(κ− iρσu)2 + σ2(i(2α + 1)u+ u2). Then we can rewrite v = (d−κ)/σ2 and

γT =
2
√
κ2 + 2ησ2

σ2(1− e−T
√
κ2+2ησ2

)
=

2d

σ2(1− e−dT )
. (35)

We have λ − v = −iuρ/σ − (d − κ)/σ2 = (κ − d − iuρσ)/σ2. Define q := κ − d − iuρσ.
Then λ− v = q/σ2. Define g := q/(q + 2d) = (κ− d− iuρσ)/(κ+ d− iuρσ), then

γT
γT + λ− v

=
2d

2d+ q − qe−dT
=

1− g
1− ge−dT

, (36)

and similarly

v +
γT

γT + λ− v
(λ− v)e−dT =

d− κ
σ2

+
q

σ2

(1− g)e−dT

1− ge−dT
. (37)

Then we can finally simplify the characteristic function in (31) as

E[eiuXT ] = exp

{
iu(r − β + αV̄ )T − iuρκV̄ T

σ
− iuρV0

σ

−κV̄ T d− κ
σ2

+
2κV̄

σ2
ln

1− g
1− ge−dT

− V0
d− κ
σ2
− V0

q

σ2

(1− g)e−dT

1− ge−dT

}
= exp

{
iu(r − β + αV̄ )T + κV̄ T

q

σ2
+

2κV̄

σ2
ln

1− g
1− ge−dT

+
V0q

σ2

1− e−dT

1− ge−dT

}
. (38)

This completes the proof.
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B Proof of Proposition 3.2

Without loss of generality, we consider the case t = 0 in this proof for notational brevity.
The formula (19) connecting the distribution function and characteristic function is known
in Gil-Pelaez (1951) and Davies (1973).

Introducing a change of measure from Q to Q̃ by a Radon-Nikodym derivative

dQ̃
dQ

=
eXT

EQ[eXT ]
=

eXT

ϕ(−i)
.

We shall prove in Remark B.1 that ψ(−i) is well-defined. Under this new measure, the
characteristic function becomes

ϕ̃(u) = EQ̃[eiuXT ] =
EQ[eXT+iuXT ]

EQ[eXT ]
=
ϕ(u− i)
ϕ(−i)

.

Therefore,

Π2 = ϕ(−i)Q̃(XT 6 k) = ϕ(−i)
{

1

2
− 1

π

∫ ∞
0

<
[
e−iukϕ̃(u)

iu

]
du

}
,

which leads to the desired formula. This completes the proof.

Remark B.1. We provide a short proof that ϕ(−i) is well-defined. Consequently ϕ(u− i)
is well-defined for all u ∈ R. It is easy to see by analytic continuation that g(µ, ν) is
analytic for

µ > − κ2

2σ2
, ν > −γ + κ+ e−γT (γ − κ)

σ2(1− e−γT )
. (39)

Therefore, ϕ(−i) is well-defined if we can show that

µ = α− ρκ

σ
+
ρ2

2
, ν = −ρ

σ

both satisfy the inequalities (39). The first inequality is satisfied because α > 0 and

ρ2

2
− ρκ

σ
+

κ2

2σ2
=

1

2

(
ρ− κ

σ

)2

> 0.

As a consequence of the first inequality, we have γ > 0. Since σ > 0, then

γ + κ+ e−γT (γ − κ)

σ2(1− e−γT )
=

2γ

σ(1− e−γT )
− γ − κ

σ
>
γ + κ

σ
. (40)

Again, because of the first inequality, we have γ > |ρσ − κ|. It follows immediately that

γ + κ

σ
>
|ρσ − κ|+ κ

σ
> ρ. (41)

Multiplying the combined inequality of (40) and (41) by −1/σ yields the second inequality.
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C Proof of Proposition 3.3

Proof. Here we first aim to prove the following identity

Et

[∫ T

t

e−r(u−t)ctotu Fudu

]
= Ft − Et

[
e−r(T−t)FT

]
. (42)

First, denote F̃t = e−rtFt and S̃t = e−rtSt, so that

dF̃t = −ctott F̃tdt+
√
VtF̃tdW

(1)
t ,

dS̃t =
√
VtS̃tdW

(1)
t .

If we assume that no fees were paid out of the account from time t to maturity, i.e.
the account return would be equal to ST/St on the period (t, T ], then the discounted
expectation of the account value at maturity is given by Ft. If fees are paid from the
account, then the discounted expected value of the account at maturity is Et

[
e−r(T−t)FT

]
.

Thus the right-hand side of (42) is the difference between the two aforementioned values:

Et

[
e−r(T−t)

(
Ft
ST
St
− FT

)]
=
Ft
St
Et
[
e−r(T−t)ST

]
− Et

[
e−r(T−t)FT

]
= Ft − Et

[
e−r(T−t)FT

]
.

We can show that this expression is also equal to the left-hand side of (42):

Et

[
Fte
−r(T−t)ST

St
− FT e−r(T−t)

]
= FtEt

[
S̃T

S̃t
− F̃T

F̃t

]

= FtEt

[
S̃t

S̃t
+

∫ T

t

dS̃u

S̃t
− F̃t

F̃t
−
∫ T

t

dF̃u

F̃t

]

= Ft

{
Et

[∫ T

t

√
Vu

(
S̃u

S̃t
− F̃u

F̃t

)
dWu

]
+ Et

[∫ T

t

ctotu
F̃u

F̃t
du

]}
.

The first expectation in the equation above vanishes because the Itô integral is a martin-
gale. Thus we have established the identity (42). One can also prove the identity using
the Dynkin’s formula (c.f. (Feng and Volkmer, 2016, Section 4.3)).

From the identity (42), we can simplify the calculation of the left hand side of (21) as

Et

[∫ T

t

e−r(u−t)cuFudu

]
= Et

[∫ T

t

e−r(u−t)ctotu Fudu

]
− Et

[∫ T

t

e−r(u−t)cinvFudu

]
= Ft − Et[e−r(T−t)FT ]−

∫ T

t

e−r(u−t)cinvEt [Fu] du. (43)

Note that Et[Fu], u > t can be easily represented in terms of the characteristic function
in Proposition 3.1 as Et[Fu] = ϕ(−i, t;u), u > t. Then we have

Et

[∫ T

t

e−r(u−t)cuFudu

]
= Ft − e−r(T−t)ϕ(−i, t;T )− cinv

∫ T

t

e−r(u−t)ϕ(−i, t;u)du. (44)

This completes the proof.
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D Additional results from numerical examples

m 0.6985 0.5834 0.4623 0.3328 0.1912 0.0000
c̄ (in %) 0.25 0.75 1.25 1.75 2.25 2.84

Ft = 80

ÊP
[
ΠNet
t+1|A

]
17.02 17.06 17.09 17.10 17.09 17.01

V̂aR95% 37.54 37.52 37.49 37.33 37.31 37.12

ÊS95% 44.46 44.36 44.25 44.11 43.94 43.67
Ft = 120

ÊP
[
ΠNet
t+1|A

]
−0.04 −0.42 −0.77 −1.08 −1.34 −1.51

V̂aR95% 15.29 15.27 15.28 15.26 15.29 15.17

ÊS95% 23.30 23.24 23.18 23.10 23.00 22.85

Table A1: Mean, VaR and ES of future net liabilities, t = 5, A = {Ft = 100, Vt = 0.0225}.

m 0.6985 0.5834 0.4623 0.3328 0.1912 0.0000
c̄ (in %) 0.25 0.75 1.25 1.75 2.25 2.84

λ = 0.5 (κ∗ = 0.078, V̄ ∗ = 0.3839)

ÊP
[
ΠNet
t+1|A

]
7.98 7.81 7.64 7.47 7.33 7.19

V̂aR95% 30.54 30.39 30.23 30.03 29.85 29.60

ÊS95% 39.38 39.19 38.99 38.76 38.51 38.14

λ = −0.5 (κ∗ = 1.078, V̄ ∗ = 0.0278)

ÊP
[
ΠNet
t+1|A

]
6.26 6.44 6.26 6.09 5.92 5.73

V̂aR95% 24.24 24.24 24.22 24.16 24.00 23.88

ÊS95% 32.87 32.80 32.72 32.61 32.47 32.22

λ = −1.5 (κ∗ = 2.078, V̄ ∗ = 0.0144)

ÊP
[
ΠNet
t+1|A

]
5.67 5.50 5.33 5.16 5.00 4.81

V̂aR95% 19.34 19.43 19.48 19.47 19.48 19.40

ÊS95% 26.91 26.94 26.96 26.95 26.91 26.79

Table A2: Mean, VaR and ES of future net liabilities, t = 5, A = {Ft = 100, Vt = 0.0225}.
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