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Abstract

The financial guarantees embedded in variable annuity (VA) contracts expose in-

surers to a wide range of risks, lapse risk being one of them. When policyholders’

lapse behavior differs from the assumptions used to hedge VA contracts, the effec-

tiveness of dynamic hedging strategies can be significantly impaired. By studying

how the fee structure and surrender charges affect surrender incentives, we obtain

new theoretical results on the optimal surrender region and use them to design a

marketable contract that is never optimal to lapse.
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1 Introduction

Variable annuities (VAs) and other types of equity-linked insurance products have grown

in popularity over the last 20 years. These products combine a participation in equity

performance with insurance features and are therefore normally sold by insurance compa-

nies. For example, a policyholder entering into a VA contract pays an initial premium,

and chooses to invest it in one or more mutual funds.1 However, unlike mutual funds,

VAs offer various financial guarantees upon death of the policyholder or at maturity of the

contract that protect the policyholder’s capital against market downturns. Some VAs also

guarantee minimum periodic withdrawals or income amounts for a fixed or varying period

of time (see Hardy, 2003 for more details).

Financial options embedded in VAs have payoff structures that are similar to those of

options traded on stock exchanges, but include three distinctive features that complicate

their pricing and risk management. First, they include guarantees that are triggered upon

death of the policyholder or after a long-term maturity, which generally exceeds five years.

Second, they are financed by a fee, which is typically paid as a fixed proportion of the

account value, as opposed to being paid upfront. Third, the policyholder has the flexibility

to withdraw the account value and cancel the contract before maturity by paying a penalty

(which may be zero after an initial period) to the insurer. These nonstandard features give

rise to risks that are difficult to mitigate, such as mortality risk, equity risk, interest rate

risk and policyholder behavior risk. As many insurance companies suffered large losses on

their VA business during the recent financial crisis, it is vital to examine original ways to

manage these risks.

This paper focuses on surrender or lapse risk2 and studies how an insurer can mitigate this

risk with product design. Surrender risk refers to the risk that policyholders terminate their

contract prior to maturity and it is a specific type of policyholder behavior risk. Surrenders

may impair the insurer’s business for several reasons. First, the insurance company may

1In some cases, additional premium amounts can be deposited in the VA account at regular intervals.
2Some authors distinguish between “lapse” and “surrender”. A lapse may refer to the policyholder not

taking advantage of the possibility to renew an expiring policy (by ceasing premium payments and without
receiving any payout from the insurer), or any voluntary cessation without a surrender payment to the
policyholder (Dickson, Hardy, and Waters (2013)). The “surrender” (or cancellation) refers to the specific
action by a policyholder during the policy term to terminate the contract and recover the surrender value.
See for instance Eling and Kochanski (2013) for details. Throughout this paper, as in Eling and Kochanski
(2013), we will not make this distinction given that we do not consider the renewing option but only the
surrender option.
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not be able to fully recover the initial expenses and upfront costs of acquiring new business

(Pinquet, Guillén, and Ayuso, 2011), as well as setting up a hedge for the guarantees in

the contract. Second, surrenders may cause liquidity issues (and loss of future profits)

(Kuo, Tsai, and Chen,2003) as there is potential for large cash demands in very short

time frames. Finally, surrenders may give rise to an adverse selection problem because

policyholders with insurability issues tend not to lapse their policies (on this topic, see

Benedetti and Biffis, 2013). Due to these negative consequences, insurers typically include

surrender charges in their VA products to discourage lapsation (Milevsky and Salisbury,

2001). These charges are generally high in the first few years of the contract to provide a

way for the insurer to recover acquisition expenses. Although surrender charges act as a

disincentive for policyholders to lapse, there are many situations where surrendering can

be advantageous for the policyholder, even after accounting for surrender penalties.

Various methods have been proposed to model policyholder lapse behavior. They range

from simple, deterministic lapse rates to sophisticated models such as De Giovanni (2010)’s

rational expectation and Li and Szimayer (2014)’s limited rationality. Knoller, Kraut, and

Schoenmaekers (2015) show that the moneyness of the embedded option plays a role in

surrender behavior. Kuo, Tsai, and Chen (2003) and Tsai (2012) study the relationship

between lapse rates of life insurance policies and the level of the interest rate, and find

a link between both rates over a long-term horizon. A recent empirical study by Eling

and Kiesenbauer (2014) based on the German life market shows that product design and

policyholder characteristics have a statistically significant impact on lapse rates, but finds

that unit-linked contracts are not surrendered more often than traditional life insurance

policies, which do not incorporate any equity-linked insurance components. Pinquet, Guil-

lén, and Ayuso (2011) claim that sub-optimal lapses are caused by insufficient knowledge of

insurance products. Eling and Kochanski (2013) provide an extensive review of the recent

literature on lapses and highlight the challenges faced by insurers in terms of modeling

lapse behavior and mitigating this risk. Overall, identifying the appropriate lapse model

is challenging because of lack of data and of the difficulty to identify the real motivation

behind a policyholder’s decision to surrender the contract by observing data on lapses.

Given that modeling lapses is complex and far from being well-understood, the insurer can

adopt a conservative approach to price and hedge the VA contract by assuming that all

policyholders are rational and surrender their policies optimally (from a financial engineer-

ing standpoint) (see for example Milevsky and Salisbury, 2001; Bauer, Kling, and Russ,
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2008; Bernard, MacKay, and Muehlbeyer, 2014).3 Nevertheless, assuming the worst case

scenario for policyholder behavior can result in a product that is too expensive to be mar-

ketable, and that is very complicated to manage and hedge. To simplify risk management,

the insurer may decide to ignore lapses when implementing a hedging strategy. However,

Kling, Ruez, and Ruß (2014) conclude that the effectiveness of hedging strategies can be

highly compromised when lapse experience deviates from the VA issuer’s assumptions.

The main contribution of this article is to show how the insurer can develop a VA design

for fees and surrender charges that eliminates the surrender incentive, while keeping the

contract marketable and attractive to the policyholder (simple design, low fees and low

surrender charges). In the proposed design, the worst case scenario for policyholder be-

havior corresponds to not surrendering the policy. Therefore, the insurer is not required to

model surrender behavior for pricing and hedging purposes because by assuming that the

policyholder will remain in the VA contract until death or maturity, the insurer will con-

servatively price and hedge this contract.4 As a result, the risk of having an inappropriate

lapse model is mitigated and risk management of the VA contract is simplified.

We start from a standard VA contract combining guaranteed minimum death benefit

(GMDB) and guaranteed minimum accumulation benefit (GMAB) riders financed by a

fee paid continuously as a constant percentage of the account value. We then derive an

explicit closed-form expression for a model-free minimal surrender charge schedule that

eliminates the surrender incentive for all account values throughout the whole term of the

contract. However, we find that these minimal surrender penalties are generally too high

to lead to a marketable VA product. To address this issue, we consider the state-dependent

fee structure introduced by Bernard, Hardy, and MacKay (2013), where the fee is paid to

the insurer only when the account value is below a certain threshold (see also Delong, 2014;

Moenig and Zhu, 2014 and Zhou and Wu, 2015).5 The motivation is the following: since

the state-dependent fee structure reduces the incentive to lapse the VA contract, it can

3The optimal surrender decision is an optimal stopping problem that can be technically challenging.
This is analogous to dealing with an American option, and pricing the maturity guarantee while ignoring
optimal lapses is similar to pricing a European option.

4This hedging strategy is in reality a superhedge. In fact, if the policyholder keeps her policy until
maturity, this strategy is exactly replicating the liabilities for a large portfolio. In case of early surrender,
our contract design is such that the payout to the policyholder is always less than the value of the liabilities.
Since the hedging portfolio of the insurer is established to replicate these liabilities, the difference between
the value of this portfolio and the payout represents a profit for the insurer. This idea is further developed
in Bauer, Bergmann, and Kiesel (2010).

5Similar fee structures were also studied independently by Bae and Ko (2010, 2013).
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be combined with smaller surrender charges to achieve our goal of removing the surrender

incentive. We show how to solve for the minimal surrender charge function that attains

this objective and conclude that it is possible to design an attractive and marketable VA

contract that eliminates the surrender incentive by combining a state-dependent fee with

surrender charges.

This article is organized as follows. Section 2 introduces the market model, the VA contract,

and the partial differential equation (PDE) approach used for pricing. Section 3 presents an

analysis of the optimal surrender incentive when the fee is paid as a constant percentage

of the fund throughout the term of the contract, and shows how this incentive can be

eliminated. Section 4 performs a similar analysis in the state-dependent fee case, and also

presents an example of a contract design that eliminates the surrender incentive. Section

5 concludes.

2 Pricing the VA contract

2.1 Market model and notation

We consider a VA contract with maturity T and underlying account value at time t denoted

by Ft, t ∈ [0, T ]. Suppose that the initial premium F0 is fully invested in an index whose

value process {St}06t6T has real-world (P-measure) dynamics

dSt

St

= µdt+ σdW P
t ,

whereW P
t is a P-Brownian motion.6 Suppose also that the usual assumptions of the Black-

Scholes model are satisfied. Therefore, the market is complete and there exists a unique

risk-neutral measure Q under which the index St follows a geometric Brownian motion

with drift equal to the risk-free rate r, so that

dSt

St

= rdt+ σdWQ
t .

6We work on a filtered probability space (Ω,FM , {FM
t }06t6T ,P) where (Ω,FM ) is a measurable space,

{FM
t }06t6T is the natural filtration generated by the Brownian motion (with FM

t = σ({W P
s }06s6t)) and

P is the real-world measure. We assume that the probability space is complete (F0 contains the P-null
sets) and that the filtration {Ft}06t6T is right-continuous.

5



We assume that the financial guarantee embedded in the VA contract is financed by a

fee paid continuously as a constant percentage c of the account value. This characteristic

differentiates the VA from options traded on stock exchanges, since these are generally

financed by a charge paid up-front. This constant fee structure, which is typical for VAs, is

problematic because it gives rise to a mismatch between the liability of the insurance com-

pany (the financial guarantee) and its income (the future fees that will be collected before

maturity or surrender). For instance, when the value of the underlying fund increases, the

liability of the insurer decreases while the expected value of the future fee income moves in

the opposite direction, i.e., increases. This mismatch creates an important surrender incen-

tive since the policyholder is paying a high price for a guarantee that has little value (for

more details, see Milevsky and Salisbury (2001) and Bernard, MacKay, and Muehlbeyer

(2014)).

To address this problem, we modify the VA design and allow for a state-dependent fee,

as first proposed by Bernard, Hardy, and MacKay (2013). Under a state-dependent fee

structure, the insurer only charges the fee when the account value is below a given level β,

called the fee barrier threshold. Since the evolution of the account value depends on this

threshold β, we add the superscript (β) to the symbol Ft. The P-dynamics of the account

value are given by

dF
(β)
t

F
(β)
t

= (µ− c1
{F

(β)
t <β}

)dt+ σdW P
t , (1)

where 1A is the indicator function of the set A. Without loss of generality, we assume that

F
(β)
0 = S0. When β = ∞, the fee is paid throughout the term of the contract regardless of

the account value, and equation (1) simplifies to

dF
(∞)
t

F
(∞)
t

= (µ− c)dt+ σdW P
t .

The case β = ∞ corresponds to the typical fee structure considered for VA contracts in

the literature, and will be referred to as the “constant fee case” in this paper.

6



2.2 Guaranteed benefits and surrender charges

We consider a VA contract with a T -year GMAB rider guaranteeing a payoff of

max(GT , F
(β)
T ),

to the policyholder at maturity T , where GT denotes a pre-determined guarantee at time

T . In addition, we include a roll-up GMDB rider that pays out a benefit of

max(Gt, F
(β)
t ),

to the policyholder if she dies before the contract matures at time 0 < t < T . We assume

that

Gt = egtF
(β)
0 , 0 < t 6 T,

where 0 6 g < r represents the guaranteed roll-up rate.

The policyholder is allowed to surrender the contract at any time 0 < t < T , in which

case she receives (1− κt)F
(β)
t : the account value F

(β)
t diminished by the surrender charge

κtF
(β)
t , where 0 6 κt 6 1. Typically, the surrender charge κt is a decreasing function of

time to discourage policyholders from lapsing early on in the contract.7 Since the contract

cannot be surrendered at maturity, we set κT = 0.

We consider two decreasing surrender charge functions, in addition to the case κt = 0 for all

t. First, we employ a vanishing surrender charge function, κt = κ(1− t/T )3. This function

mimics surrender penalties found on the market, which are typically high in the first years

of the contract, and drop rapidly to add liquidity to the VA investment. Second, we use

the function κt = 1− e−κ(T1−t∧T1), where 0 < T1 6 T , which results in approximately linear

surrender charges from t = 0 to T1. Such a surrender charge schedule is similar to the one

included in New York Life’s Premier Variable Annuity (New York Life, 2014) which starts

at 8% and decreases by 1% each year thereafter until zero.8

7Early surrenders have a detrimental impact on the insurer’s business because VA contracts have front-
loaded expenses that are recouped from fees collected during the first few years of the contract.

8We could have also considered a piecewise constant surrender charge function in our analysis. However,
we preferred to use smooth surrender charge schedules because they lead to smooth surrender regions.
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2.3 Mortality model

Since the VA contract that we consider includes death benefits, we must incorporate mor-

tality risk. Therefore, we introduce the filtration {FB
t }06t6T that carries binary information

on the mortality of the policyholder (alive or dead). We let Ft = FM
t ∨FB

t for all 0 6 t 6 T .

By adding mortality risk, the market becomes incomplete and, as a result, there exists in-

finitely many equivalent risk-neutral measures (see Dhaene, Kukush, Luciano, Schoutens,

and Stassen (2013) for more details). Similarly to Bauer, Kling, and Russ (2008) and Hardy

(2000), we assume risk-neutrality of the insurer with respect to mortality risk and choose

to price under the measure that preserves independence between market and mortality

risks. The first assumption implies that death probabilities are identical under real-world

and risk-neutral measures, and that the insurer does not require to earn excess returns

for assuming mortality risk. This can be justified on the basis that mortality risk is fully

diversifiable. The second assumption implies that the risk-neutral measure for both market

and mortality risks is the product measure of Q and the measure for mortality risk. For

simplicity, we will also denote this product measure by Q.

The future lifetime of a policyholder age x is represented by the random variable ρ > 0

and the force of mortality at age x is denoted by λx (we diverge from the usual actuarial

notation, which uses µx for the force of mortality, to avoid confusion with µ used in the

asset price model). The probability that a policyholder age x + t survives to age x + u,

0 6 t < u, is given by

u−tpx+t = e−
∫ u

t
λx+sds.

In numerical illustrations, we assume that mortality follows Makeham’s law, i.e., the force

of mortality at age x is modeled as

λx = A+Bcx, x > 0,

with A = 0.0001, B = 0.00035, and c = 1.075. This mortality model yields life expectancies

of 21.7, 15.1 and 9.8 years at ages 50, 60 and 70, respectively.

2.4 Valuation of the VA contract

We assume that the VA contract is issued to a policyholder age x and that death benefits

are paid out at the time of death. We let V (t, F
(β)
t ) denote the value of the contract at time
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t ∈ [0, T ] given that the policyholder is alive at age x + t. Since the VA contract can be

surrendered at any time before maturity, its pricing becomes an optimal stopping problem.

To define this problem, we must introduce further notation. Denote by Tt the set of all

stopping times τ greater than or equal to t and bounded by T . Then, for a policyholder

alive at time t, define the continuation value of the VA contract as

V ∗(t, F
(β)
t ) = sup

τ∈Tt

EQ

[
e−r(τ−t)ψ(τ, F (β)

τ )1{ρ>τ} + e−r(ρ−t)max(Gρ, F
(β)
ρ )1{ρ6τ} | Ft

]

= sup
τ∈Tt

EQ

[
EQ

[
e−r(τ−t)ψ(τ, F (β)

τ )1{ρ>τ} + e−r(ρ−t)max(Gρ, F
(β)
ρ )1{ρ6τ}

∣∣ Ft, τ, F
(β)
τ

] ∣∣ Ft

]

= sup
τ∈Tt

EQ

[
e−r(τ−t)ψ(τ, F (β)

τ )τ−tpx+t +

∫ τ

t

e−r(u−t)max(Gu, F
(β)
u )u−tpx+tλx+udu

∣∣∣∣ Ft

]
,

(2)

where

ψ(t, F
(β)
t ) =




(1− κt)F

(β)
t , if t ∈ [0, T ),

max(GT , F
(β)
T ), if t = T,

is the payoff of the contract at surrender or maturity. The expression inside the expectation

of equation (2) reflects the assumption that mortality risk is fully diversifiable for the

insurance company. Similar expressions were obtained by Bauer, Kling, and Russ (2008)

and Milevsky and Salisbury (2001).

The price of the VA contract at time t ∈ [0, T ] is then given by

V (t, F
(β)
t ) =




V ∗(t, F

(β)
t ), if F

(β)
t ∈ Ct,

ψ(t, F
(β)
t ), if F

(β)
t ∈ St,

where Ct and St are two disjoint sets of fund values satisfying Ct ∪ St = [0,∞), and

representing, respectively, the continuation and optimal surrender regions. We define Ct as
the set of fund values for which the continuation value of the VA contract is strictly greater

than the surrender benefit:

Ct = {F (β)
t <∞ : V ∗(t, F

(β)
t ) > ψ(t, F

(β)
t )}.

Because the continuation value of the contract can never be strictly less than the surrender
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benefit, the optimal surrender region is given by

St = {F (β)
t <∞ : V ∗(t, F

(β)
t ) = ψ(t, F

(β)
t )}.

When the VA fee is paid regardless of the account value (β = ∞), the optimal surrender

region at time t, if it exists, is of threshold type, that is St = {F (∞)
t > Bt}, with or without

surrender penalties (see Bernard, MacKay, and Muehlbeyer (2014) for more details). The

symbol Bt represents the fund threshold which induces a rational policyholder to surrender

her VA contract at time t. The curve {(t, Bt) : t ∈ (0, T )} is usually referred to as the

optimal surrender boundary. Our analysis in Section 4 shows that the optimal surrender

region in the case of a state-dependent fee is not necessarily of threshold type.

Unless otherwise indicated, we assume that VA contracts are fairly priced. The fair fee is

defined as the fee rate c∗ satisfying

F
(β)
0 = V (0, F

(β)
0 ; c∗),

where V (0, F
(β)
0 ; c∗) is the price of the contract evaluated at the fee rate c∗.

2.5 PDE representation of the VA contract price

Using the Feynman-Kac representation formula (see, for example, pp. 73–75 of Björk

(2004)), we see that (2) is the solution to a partial differential equation (PDE). Therefore,

we can obtain the price and optimal surrender region of the VA contract by numerically

solving this PDE. In the Black-Scholes framework, under the usual no-arbitrage assump-

tions, V (t, F
(β)
t ) must satisfy the following PDE in the continuation region Ct,9

∂V

∂t
+

1

2

∂2V

∂F
(β)
t

2F
(β)
t

2
σ2+

∂V

∂F
(β)
t

F
(β)
t

(
r − c1

{F
(β)
t <β}

)
− (r+λx+t)V +λx+t max(Gt, Ft) = 0,

(3)

for 0 6 t 6 T (and F
(β)
t ∈ Ct). In the optimal surrender region St, we have

V (t, F
(β)
t ) = ψ(t, F

(β)
t ),

9A similar PDE representation for the constant fee case is provided by Ulm (2006).
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for 0 6 t 6 T (and F
(β)
t ∈ St).

We impose the following boundary conditions:

V (T, F
(β)
T ) = max(GT , F

(β)
T ),

lim
F

(β)
t →0

V (t, F
(β)
t ) = V (t, 0) = GT e

−r(T−t)
T−tpx+t +

∫ T

t

Gue
−r(u−t)

u−tpx+tλx+udu. (4)

The first boundary condition is simply the VA payoff at maturity. The second boundary

condition corresponds to a lower bound for the contract value which assumes F
(β)
t = 0 and,

therefore, that it is certain that the guarantee is in the money at death or maturity.

To solve the PDE in (3), we must also specify an upper boundary condition. However, the

behavior of the contract price for high account values depends on the fee structure, and it

is generally not possible to specify this boundary exactly for a finite value of F
(β)
t .

2.5.1 Upper boundary in the constant fee case

In the constant fee case, when surrender penalties are not large enough to eliminate the

surrender incentive, an upper boundary can be specified exactly because the price of the

VA contract corresponds to the surrender benefit for sufficiently high fund values.

On the other hand, Section 3.2 shows that there exists a minimal surrender charge function

such that the optimal strategy corresponds to not surrendering the policy at all times. The

asymptotic behavior of the contract price in this case can be calculated by choosing τ = T

in expression (2), so that

lim
F

(∞)
t →∞

V (t, F
(∞)
t )

F
(∞)
t

= e−c(T−t)
T−tpx+t +

∫ T

t

e−c(u−t)
u−tpx+tλx+udu.

However, finite difference methods can be avoided to solve the problem in this specific

case, because the price of the VA contract has an analytical representation that includes

an integral averaging Black-Scholes European put prices over the policyholder’s future

lifetime distribution (see, for example, Hardy (2003); Ulm (2008)).
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2.5.2 Upper boundary in the state-dependent fee case

In Appendix A, we show that the following asymptotic behavior holds in the state-dependent

fee case regardless of the form assumed for the surrender charge function:

lim
F

(β)
t →∞

V (t, F
(β)
t )

F
(β)
t

= 1. (5)

This result implies that we may use F
(β)
t as an upper boundary for V (t, F

(β)
t ) when solving

the PDE in (3) numerically. This limiting behavior can be justified intuitively as follows.

When F
(β)
t ≫ β, the maturity benefit has almost no value, and the policyholder does not

expect to pay any more fees, implying that

EQ

(
e−r(u−t)max(Gu, F

(β)
u )

∣∣ Ft

)
≈ EQ

(
e−r(u−t)F (β)

u

∣∣ Ft

)
≈ F

(β)
t , t 6 u 6 T.

Assuming no fees will be paid until death or maturity eliminates the surrender incentive

and allows us to value the contract as

EQ

[
e−r(T−t)max(GT , F

(β)
T )τ−tpx+t +

∫ T

t

e−r(u−t)max(Gu, F
(β)
u )u−tpx+tλx+udu

∣∣∣∣ Ft

]

≈ F
(β)
t

(
τ−tpx+t +

∫ T

t
u−tpx+tλx+udu

)

= F
(β)
t .

Under a state-dependent fee, Bernard, Hardy, and MacKay (2013) derived integral repre-

sentations for the prices of GMAB and GMDB riders assuming that the VA contract cannot

be surrendered. Since we will not make this assumption in the following sections, we will

use the PDE approach to value VA contracts as it allows us to treat all possible surrender

assumptions. Appendix B provides additional details on the numerical implementation of

this approach.

3 VA contract in the constant fee case

This section analyzes how surrender penalties impact the fair fee charge and the surrender

incentive in the constant fee case. Throughout this section, β = ∞, so we omit the
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superscript on the symbol F
(β)
t and write Ft = F

(∞)
t . We explain how to design a VA

contract without any surrender incentive, and show that the surrender penalties needed

to remove this incentive in the constant fee case lead to contracts which may be difficult

to market. Understanding the interplay between the fee rate, surrender charges and the

surrender incentive in this case is the first step towards designing a contract that eliminates

the surrender incentive while offering reasonable fee rates and surrender charges.

3.1 Fair fee and optimal surrender region

We study VA contracts with an initial investment of F0 = 100, T = 10 and 20-year

maturities and a guaranteed roll-up rate of g = 0 issued to policyholders age x = 50, 60

or 70. The volatility parameter of the market model was fitted to a data set of weekly

percentage log-returns on the S&P500 from October 28, 1987 to October 31, 2012, from

which we obtained σ = 0.165. We further assume r = 0.03.

Table 1 presents fair fees calculated for the constant fee case under different assumptions for

the surrender charge function. We consider two examples of the realistic surrender charge

schedules introduced in Section 2.2, in addition to the extreme cases of κt = 0 and κt = 1

for all t. Note that the case κt = 1 for all t directly eliminates any surrender incentive, and

simplifies the valuation of the VA contract to a European option pricing problem.

Maturity T = 10 T = 20

Age at issue 50 60 70 50 60 70

κt = 0 0.0393 0.0442 0.0549 0.0195 0.0266 0.0415

κt = 0.05(1− t/T )3 0.0184 0.0200 0.0234 0.0078 0.0102 0.0152

κt = 1− e−0.008(10−t∧10) 0.0127 0.0139 0.0164 0.0073 0.0090 0.0127

κt = 1 (no surrender) 0.0115 0.0126 0.0148 0.0050 0.0065 0.0099

Table 1: Fair fee in the constant fee case (β = ∞).

When the insurer does not charge a penalty for early surrender, the fee income represents

its only revenue. This income compensates the insurer for both the guarantee offered and

early surrender risk (the risk of not being able to collect future fees on the account value).

Table 1 shows that to fully mitigate lapse risk in the absence of surrender charges (κt = 0),
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the insurer must charge a fee which may be too high to be marketable.10 When T = 20

and x = 50 or 60, the resulting fair fee may actually lie in the higher end of a marketable

range. However, it must be noted that the fair fees we compute represent lower bounds for

the fee rates an insurer would charge. In practice, the insurer must be compensated for

administrative expenses as well as make a profit, and may want to include a buffer in the

fee to account for model risk.

One way to reduce the fair fee and still fully mitigate lapse risk is to introduce surrender

penalties in the product design. These penalties represent an additional revenue for the

insurer, enabling it to decrease the constant fee charge, and also work as a disincentive to

lapse. Table 1 shows that the two surrender charge schedules we consider help reduce the

fair fee by more than 50%.

With a lower fair fee, the fund threshold at which the guarantee becomes less valuable

than the expected future fees increases. In addition, surrender charges reduce the amount

received at lapsation, further increasing this threshold. The combination of these two

effects therefore results in an upward shift of the optimal surrender boundary. Figures 1

and 2 plot these boundaries for a VA product issued to a 60-year-old policyholder with

maturity T = 10 and 20, respectively. Clearly, the two realistic surrender charge schedules

considered in Table 1 are unable to eliminate the surrender incentive completely. This

conclusion could also have been made by noting that the fair fees associated with these

schedules are higher than those for the case κt = 1 for all t (see Table 1). As a portion

of these higher fees must compensate the insurer for lapse risk, a surrender incentive must

exist.

It is interesting to note that the exponential surrender charge function we consider is

sufficient to eliminate the surrender incentive in the first years of the contract for the case

T = 20, but not for T = 10. This is due to the lower fee rate associated with the 20-year

contract. In general, a VA product with a lower fee rate can be combined with smaller

surrender charges to eliminate the surrender incentive. In the next section, we investigate

this observation in greater depth.

10Milevsky and Salisbury (2001) argued that VA contracts without surrender charges are not marketable
for an additional reason: a rational policyholder would lapse the contract if the account value rises sharply
right after contract inception. This is simply because the optimal surrender boundary must intersect F0

at t = 0 due to the constraint imposed by the fair fee, i.e., F0 = V (0, F0).
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3.2 Minimal surrender charge to eliminate surrender incentives

Figures 1 and 2 illustrate that the two realistic surrender charge schedules examined in

Table 1 do not include high enough penalties to remove the surrender incentive, and are

only successful at reducing it. We now determine the minimal surrender charge schedule

that completely eliminates this incentive. The main motivations for such a contract design

are (i) to reduce the fair fee to a minimum so that this fee need not offer a compensation

for lapsation risk and (ii) to simplify the implementation of the optimal hedging strategy

for the insurer. A VA contract without any surrender incentive avoids the need to model

lapse behavior in the hedging strategy, because the optimal strategy is limited to hedging

maturity and death benefits only. As lapses are sub-optimal in this context, they must

necessarily result in a profit for the insurer.
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Figure 1: Fairly priced VA products with maturity T = 10. Left panel : Surrender charge
function. Right panel : Optimal surrender boundary. Legend : solid line: κt = 0; dashed line:
κt = 0.05(1− t/T )3; dotted line: κt = 1− e−0.008(10−t∧10).

To design such a policy, we look for a surrender charge function κt satisfying,

V ∗(t, Ft) > (1− κt)Ft, ∀Ft > 0, and ∀t ∈ [0, T ). (6)

That is, surrender penalties must be sufficiently high so that the continuation value of the

contract, V ∗(t, Ft), is larger than the surrender benefit, (1 − κt)Ft, for any given time t.

Proposition 3.1 provides the minimal surrender charge function that is needed to satisfy

condition (6). Its proof is given in Appendix C.
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Figure 2: Fairly priced VA products with maturity T = 20. Left panel : Surrender charge
function. Right panel : Optimal surrender boundary. Legend : solid line: κt = 0; dashed line:
κt = 0.05(1− t/T )3; dotted line: κt = 1− e−0.008(10−t∧10).

Proposition 3.1. Using notation from Section 2 in the constant fee case (β = ∞), the

minimal value of κt at each time t ∈ [s, T ) such that it is never optimal to surrender the

policy in the time interval [s, T ) is equal to

κ⋆t = 1− e−c(T−t)
T−tpx+t −

∫ T

t

e−c(u−t)
u−tpx+tλx+udu, s 6 t < T.

The result given by Proposition 3.1 holds for any arbitrage-free complete market model (not

just for the Black-Scholes model), as long as the pricing measure assumes risk-neutrality

with respect to mortality risk and independence between mortality and financial risks. It

shows that if κt > κ⋆t for all future t < T , then the contract will not be surrendered by a

rational policyholder.

Remark 3.1. The condition κt > κ⋆t is also sufficient to guarantee that it is not optimal

to lapse at time t, regardless of the form assumed for κu, t < u < T . To understand why,
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observe that

V ∗(t, Ft)

Ft(1− κt)
>

fair value of maturity and death benefits

value of surrender benefit

=
EQ

[
e−r(T−t)max(GT , FT )T−tpx+t +

∫ T

t
e−r(u−t)max(Gu, Fu)u−tpx+tλx+udu

∣∣∣ Ft

]

Ft(1− κt)

>
e−c(T−t)

T−tpx+t +
∫ T

t
e−c(u−t)

u−tpx+tλx+udu

1− κt
, ∀Ft > 0.

It is clear that, for any value of Ft at time t, whenever κt > κ⋆t , the continuation value,

V ∗(t, Ft), must be strictly greater than the surrender value, Ft(1− κt), which means that

surrender is sub-optimal. The converse of this result does not necessarily hold: if surren-

dering is not optimal at time t, ∀Ft > 0, then it is not necessarily true that κt > κ⋆t . In

other words, it is possible that surrender is not optimal at time t even if κt ∈ [0, κ⋆t ). Such

a situation can only occur if the condition κu > κ⋆u is not always satisfied ∀u ∈ (t, T ). In

sum, a surrender charge of κ⋆t at time t is always high enough to eliminate the surrender

incentive at time t. However, it will correspond to the minimal surrender charge achieving

this objective only if it is never optimal to surrender the contract after time t.

The first step to design a fairly priced VA product which does not give rise to a surrender

incentive, but with minimal surrender charges, is to compute the fair fee assuming that

the contract cannot be surrendered, or equivalently, κt = 1, ∀t. This step corresponds to a

European option pricing problem and only involves computing the fair value of maturity

and death benefits. The second step is then to compute the minimal surrender charge

schedule by applying Proposition 3.1.

In Figure 3, we plot the resulting minimal surrender charge schedules associated with

10 and 20-year VA contracts issued to a policyholder age 60. These surrender charge

functions, along with the corresponding fair fees (see last line of the caption of Figure 3),

generate fairly priced VA product designs that do not give rise to a surrender incentive,

i.e., rational policyholders will never choose to lapse these contracts. Unfortunately, these

designs include high surrender penalties that could significantly impact the marketability

of the VA product. In fact, surrender charges start at a value above 8% and drop below 5%

only halfway through the contract. Such penalties are slightly higher and their decrease

is slower than the charges observed on the market, especially in the case of contracts with

longer maturities. For example, surrender charges in New York Life’s Premier Variable
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Annuity (New York Life (2014)) start at 8% and decrease by 1% each year thereafter until

zero. This is less than the surrender charges we obtain, and our fee structure does not

include any security margin. Thus, it is reasonable to conclude that surrender charges

designed to completely eliminate the optimal surrender incentive would be higher than

those currently offered on the market.
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Figure 3: Minimal surrender charge schedule that completely eliminates the surrender incentive
in the constant fee case for a fairly priced VA contract issued to a policyholder age 60. Legend :
solid line: T = 10 and c = 0.0126; dashed line: T = 20 and c = 0.0065.

For marketing reasons, it may be desirable for an insurer to offer VA products with low

surrender charges after a few years. In fact, VAs compete with mutual funds, which have

little to no surrender charges, and the relatively lower liquidity of VAs can be used as an

argument against them. For this reason, insurers might prefer VA designs that offer a

protection against lapse risk with lower surrender charges. In the next section, we show

how the introduction of a state-dependent fee into the VA product design can help achieve

this objective and lead to product designs that appear interesting for both the insurer and

the policyholder.

4 VA contract in the state-dependent fee case

In Section 3, we have shown that in the constant fee case (the typical fee structure in the

industry) the surrender penalties required to eliminate the surrender incentive can be very
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high under reasonable market assumptions. We now explore how a state-dependent fee

structure can help solve this problem by examining its impact on the optimal surrender

region. The main motivation for considering this fee structure is the following. Since fees

are paid only when the fund value is below a certain threshold, the incentive to surrender

the contract is significantly reduced at high account values. Therefore, this fee structure

can be combined with smaller surrender charges to discourage lapsation.

The VA contract and assumptions considered in this section are identical to those in Sec-

tion 3, with the exception that fees are now paid only when the account value is below a

certain threshold β < ∞. Bernard, Hardy, and MacKay (2013) studied the case β = F
(β)
0

in the absence of surrender charges. As this design leads to an unrealistically high fair fee,

we choose to consider a threshold of β = 150 in our numerical illustrations because it leads

to practical contract designs.

4.1 Fair fee and optimal surrender region

Table 2 presents fair fees calculated in the state-dependent fee case with β = 150 under

different assumptions for the surrender charge function. In general, these fair fees are

higher than those computed in the constant fee case (see Table 1), because the expected

income of the insurer is reduced in the presence of a fee barrier threshold. However, note

that the fair fee is the same for β = 150 and ∞ when κt = 0. This observation suggests

that the state-dependent fee structure may not always lead to a decrease in the surrender

incentive.

Maturity T = 10 T = 20

Age at issue 50 60 70 50 60 70

κt = 0 0.0393 0.0442 0.0549 0.0195 0.0266 0.0415

κt = 0.05(1− t/T )3 0.0190 0.0205 0.0237 0.0096 0.0119 0.0163

κt = 1− e−0.008(10−t∧10) 0.0167 0.0179 0.0204 0.0098 0.0120 0.0165

κt = 1 (no surrender) 0.0166 0.0177 0.0202 0.0093 0.0114 0.0155

Table 2: Fair fee in the state-dependent fee case with a fee barrier threshold of β = 150.
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Figure 4: Optimal surrender region in the state-dependent fee case with β = 150 for a 10-year
VA contract issued to a policyholder age 60. Left panel : κt = 0 and c = 0.0442. Middle panel :
κt = 0.05(1− t/T )3 and c = 0.0205. Right panel : κt = 1− e−0.008(10−t∧10) and c = 0.0179.
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Figure 5: Optimal surrender region in the state-dependent fee case with β = 150 for a 20-year
VA contract issued to a policyholder age 60. Left panel : κt = 0 and c = 0.0266. Middle panel :
κt = 0.05(1− t/T )3 and c = 0.0119. Right panel : κt = 1− e−0.008(10−t∧10) and c = 0.0120.

Figures 4 and 5 illustrate the optimal surrender regions for a VA product issued to a

policyholder age 60 with maturity T = 10 and 20, respectively. The left panel in these

figures is associated with κt = 0, and clearly shows that it is always optimal to lapse before

the account value reaches the fee barrier threshold β. Therefore, a rational policyholder

will never wait for the fund to reach the fee barrier threshold of β = 150, and from her
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perspective, constant or state-dependent fee designs are equivalent. This explains why the

fair fee and the optimal surrender regions are the same when β = 150 and ∞.

Nevertheless, when surrender charges are introduced, the middle and right panels of Fig-

ures 4 and 5 reveal that the state-dependent fee structure can significantly impact the

optimal surrender region (for example, compare Figures 1 and 2 to Figures 4 and 5). Four

important observations can be made.

(i) The optimal surrender strategy is no longer of threshold type.

(ii) It is not optimal for the policyholder to lapse the contract when the account value is

close to or above the fee barrier threshold β.

(iii) The surrender incentive is eliminated in the early years of the contract term. The

high surrender penalties early in the contract incentivizes the policyholder to wait for

the account value to grow above the fee barrier threshold.

(iv) In general, the state-dependent fee structure reduces the surrender incentive, at the

cost of increasing the fair fee.

Observation (ii) can be proven to hold in general and is formalized in Proposition 4.1 (the

proof is given in Appendix D).

Proposition 4.1. Let F
(β)
t and κt be defined as in Section 2 and assume β < ∞. Then,

for any t ∈ [0, T ],

V ∗(t, F
(β)
t ) > F

(β)
t (1− κt), ∀F (β)

t > β. (7)

If κt > 0 at time t, the inequality in (7) is strict.

Proposition 4.1 simply states that when the fee is state-dependent and the account value

is above the fee barrier threshold β, the contract is always worth at least as much as the

surrender benefit F
(β)
t (1− κt). The intuition for this result is the following. If the account

value is above β, the policyholder does not have a clear incentive to surrender because

the VA product offers her a maturity guarantee and a death benefit for which she is not

required to pay for at the moment (the guarantees are offered for free). As a result, a

rational policyholder will wait for the account value to reach β, before even considering

surrendering the contract.

21



Remark 4.1. When the surrender charge at time t is greater than 0, that is, κt > 0,

Proposition 4.1 implies that the optimal surrender region cannot include fund values above

or equal to β. However, as explained in the proof of Proposition 4.1 (see Appendix D),

when κt = 0, we could have,

V ∗(t, F
(β)
t ) = F

(β)
t , ∀F (β)

t > β. (8)

By the definition of the optimal surrender region given in Section 2.2 (the policyholder

is assumed to lapse when the continuation value of the contract is equal to the surrender

benefit), the equality in equation (8) actually induces surrender. This argument explains

why the optimal surrender region includes fund values above β in the left panels of Figures 4

and 5. However, strictly speaking, a rational policyholder would actually be indifferent to

lapse in this situation because the surrender benefit is exactly equal to the continuation

value of the contract assuming a specific surrender strategy (see Appendix D for more

details).

4.2 Minimal surrender charge to eliminate surrender incentives

In Section 3, we derived a closed-form expression for the minimal surrender charge function

that eliminates the surrender incentive in the constant fee case (β = ∞), and showed

that the resulting surrender penalties may be too high to be of practical value. We now

explain how to determine the corresponding minimal surrender charge function in the

state-dependent fee case (β < ∞) and show an example where the resulting contract

design appears marketable under reasonable assumptions. For ease of notation, we denote

the total value of maturity and death benefits (that is, the value of the VA contract if

surrenders are not allowed) by U(t, F
(β)
t ), where

U(t, F
(β)
t ) = EQ

[
e−r(T−t)max(GT , F

(β)
T )T−tpx+t +

∫ T

t

e−r(u−t)max(Gu, F
(β)
u )u−tpx+tλx+udu

∣∣∣∣ Ft

]
.

Obtaining a simple closed-form expression for the minimal surrender charge function when

β <∞ is challenging due to the following reasons. First, although there exists an integral

representation for the value of the maturity benefit (see, Bernard, Hardy, and MacKay

(2013)), or for the discounted expectation of the account value at future times, the ex-

pressions involved depend on the current account value F
(β)
t , typically in a complex way.
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Second, the function U(t, F
(β)
t )/F

(β)
t is generally not monotone in F

(β)
t because the ex-

pected future fees are themselves not necessarily monotone in F
(β)
t when a state-dependent

fee is considered, i.e., the fee income at t increases with F
(β)
t while F

(β)
t < β, but drops to

0 as soon as F
(β)
t > β. Therefore, we must resort to a numerical procedure to solve for the

minimal surrender schedule that eliminates the surrender incentive in the state-dependent

fee case. This procedure is outlined in the following steps.

Step 1: Find the fair value of the fee rate c assuming that the contract cannot be surrendered,

or equivalently, κt = 1, ∀t.

Step 2: For each t ∈ [0, T ), numerically obtain the account value F ⋆
t at which the ratio of the

value of maturity and death benefits to the fund value is the smallest:11

F ⋆
t = arg inf

F
(β)
t >0

{
U(t, F

(β)
t )

F
(β)
t

}
.

Step 3: Finally, set

κt = max

(
1− U(t, F ⋆

t )

F ⋆
t

, 0

)
.

The fair fee in Step 1 can be computed with a PDE approach, or via Proposition 3.1 in

Bernard, Hardy, and MacKay (2013). The infima F ⋆
t in Step 2 are easily obtained after

setting up a finite difference grid for the value of the European contract because this grid

provides us with values of U(t, F
(β)
t ) at discrete values of t and F

(β)
t in the grid.

Note that to obtain the minimal surrender charge schedule, it is not necessary to solve an

optimal stopping problem. The algorithm only requires us to calculate the present value of

maturity and death benefits at different points in time and for different account values F
(β)
t .

When these present values cannot be obtained semi-analytically (as in Bernard, Hardy, and

MacKay (2013)) or are difficult to implement with PDE methods (due to product or model

complexity), they can generally be easily computed using Monte Carlo simulations.

11This step implicitly assumes that the continuation value of the VA contract is equal to the value of
the contract if surrenders are not allowed, i.e.,

V ∗(t, F
(β)
t ) = U(t, F

(β)
t ),

which is the correct assumption to make because κt is chosen in such a way that lapsation is not optimal
during the entire length of the contract.
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4.3 Marketable VA product with no surrender incentive

We apply the numerical procedure just introduced to 10 and 20-year VA contracts with a

fee barrier threshold of β = 150 issued to a policyholder age 60. The fair fees for these

contracts when there is no surrender incentive corresponds to c = 0.0177 and 0.0114 for

contract maturities of T = 10 and 20 years, respectively (see first line of Table 2). The left

panels in Figures 6 and 7 illustrate the minimal surrender charge schedule that eliminates

the surrender incentive for each of the two contracts considered. The values F ⋆
t used in the

calculation of the surrender charge are given in the right panels of these figures. Observe

that V (t, F ⋆
t ) = (1 − κt)F

⋆
t along this boundary, and that surrender is never optimal on

either side of the boundary. It is therefore never clearly optimal for the policyholder to

lapse her contract.
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Figure 6: VA contract issued to a policyholder age 60 with maturity T = 10, fair fee rate
c = 0.0177 and fee barrier threshold β = 150. Left panel : Minimal surrender charge function not
giving rise to an optimal lapsation boundary. Right panel : Values of F ⋆

t .

These contract designs include surrender charges and fees that appear marketable. For

example, surrender penalties are below 3% and 2% during most of the contract term for

maturities T = 10 and 20 years, respectively. This is significantly lower than the minimal

surrender charge schedule required to eliminate the surrender incentive in the constant fee

case (see Section 3.2).

We can further compare these two product designs to a typical constant fee product design

with β = ∞ and the exact same schedule of surrender charges. It turns out that when
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pricing this contract under optimal policyholder behavior, the fair value of c when β = ∞
is identical to the one when β = 150, and the optimal lapsation boundaries for contract

maturities T = 10 and 20 correspond to the curves in the right panel of Figures 6 and 7,

respectively.
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Figure 7: VA contract issued to a policyholder age 60 with maturity T = 20, fair fee rate
c = 0.0114 and fee barrier threshold β = 150. Left panel : Minimal surrender charge function not
giving rise to an optimal lapsation boundary. Right panel : Values of F ⋆

t .

This result may seem surprising at first, but has an intuitive explanation. First, note that

for a given surrender charge function, and assuming that the policyholder lapses optimally,

the state-dependent fair fee is an upper bound the constant fair fee. This is due to the

fact that under the state-dependent fee design, the fee might be paid over a period of

time shorter than in the constant fee case. Second, consider a policyholder who lapses as

soon as the account value hits the curve {(t, F ⋆
t ) : t ∈ (0, T )} and assume that this curve

always lies below β (see the right panel of Figures 6 and 7). Since along this curve, the

surrender benefit is exactly equal to the continuation value of the contract when β = 150,

this surrender strategy allows the policyholder to extract the maximum value from that

contract and is thus optimal when β = 150 (as is not surrendering). Moreover, note that

a policyholder following this surrender strategy would have received the exact same payoff

and paid the exact same fees if the product design had β = ∞. Consequently, the fair

value of c computed for β = 150 must be a lower bound for the fair fee when β = ∞, as

it is the fair c under one possible surrender strategy. Therefore, the fair value of c cannot

change when we modify the fee barrier threshold from β = 150 to β = ∞, because we have
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shown that this value is both an upper and lower bound for the fair fee when β = ∞.

Since contracts with β = ∞ and 150 charge the same fee rate and have the same surrender

penalties, designs with β = 150 are more attractive to a policyholder than the ones with

β = ∞ due to the presence of a threshold above which the fee is not paid. However, from

a risk management standpoint, it can be argued that these designs are also preferable for

the insurer because they do not give rise to an optimal surrender region. As a consequence,

the VA product can be managed assuming no surrenders (as this is the optimal behavior

when β = 150), which simplifies the construction of the hedging portfolio and reduces the

importance of modeling lapses for pricing and hedging purposes.

5 Concluding Remarks

This paper provided some insights to answer a very practical question: How can an insurer

use product design to mitigate lapse risk and simplify risk management (hedging) in VAs?

To answer this question, we examined the interplay between the fee structure of a VA

contract combining GMDB and GMAB riders and the schedule of surrender charges. We

showed that by considering a state-dependent fee structure and relatively low surrender

charges, an insurer can design a contract that will never be optimal to lapse, while still

being marketable. We also argued that such an outcome can generally not be achieved

with a constant fee structure.

The risks embedded in this new contract design are easier for the insurer to manage because

only the (European) value of maturity and death benefits offered need to be considered to

construct the most effective hedging strategy. In fact, it is no longer necessary to model

surrender behavior for pricing and hedging purposes as surrenders are sub-optimal in this

context. In other words, if the insurer’s hedging portfolio replicates the value of death and

maturity benefits, this portfolio will always be sufficient to pay for the surrender benefit if

the policyholder decides to lapse before maturity. The difference between the value of this

portfolio and the surrender benefit represents an instant profit to the insurer that can offer

a compensation for the liquidity strain created by premature lapsation.

Moreover, not having to consider an optimal stopping problem when establishing the hedg-

ing strategy is advantageous to the insurer for at least two reasons. First, it is very im-

practical for the insurer to have to account for all of the different optimal surrender regions
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associated with the VA products sold. When these products do not give rise to a surren-

der incentive, the hedging strategy can be implemented in a uniform manner across the

portfolio of VAs. Second, the insurer can use straightforward Monte Carlo simulations,

rather than PDE methods or computationally demanding backward procedures, to value

the hedging portfolio and calculate its Greeks. This is especially important because VA

products sold in the market have many complex features, and Monte Carlo simulations are

often the only feasible alternative to value these products.

Our focus on optimal surrender behavior can also be justified by the possibility of secondary

markets for equity-linked life insurance. In fact, Gatzert, Hoermann, and Schmeiser (2009)

explain how both consumers and insurers can benefit from a secondary market for life in-

surance contracts. On the one hand, consumers get a better price (lower surrender charges)

and on the other hand, it makes the life insurance market more attractive and thus po-

tentially increases the demand for the insurer’s products. Hilpert, Li, and Szimayer (2014)

further discuss the impact of the surrender option and the existence of a secondary market

for equity-linked life insurance, and show that the introduction of sophisticated investors

by the secondary market may lead to higher premiums that account for a higher propor-

tion of optimal surrenders. This result is somewhat consistent with Gatzert, Hoermann,

and Schmeiser (2009) who explain that life insurers need to abandon lapse-supported pric-

ing (i.e. pricing under the assumption of sub-optimal lapses that benefit the insurer). In

other words, as the existence of a secondary market mechanism should suppress contract

arbitrages, policyholders having access to this market should tend to act optimally.

Further research should investigate the robustness of product design and dynamic hedging

strategies under various market models. The product design analysis could also be extended

to VA contracts offering other types of financial guarantees.
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A Proof of Equation (5)

To prove (5) we need the two following lemmas.

Lemma A.1. Let F
(β)
t , 0 6 t 6 T , be as defined in Section 2 and let β <∞. Then,

lim
y→∞

EQ[e
−r(T−t)F

(β)
T T−tpx+t +

∫ T

t
e−r(u−t)F

(β)
u u−tpx+tλx+udu|F (β)

t = y]

y
= 1. (9)

Proof. We first show that for any u ∈ (t, T ],

lim
y→∞

EQ[e
−r(u−t)F

(β)
u |F (β)

t = y]

y
= 1. (10)

Let mF (t, u) = inft6s6u F
(β)
s and mS(t, u) = inft6s6u Ss be the minimum values attained by

the account and the index, respectively, between times t and u. Then,

EQ[e
−r(u−t)F

(β)
u |F (β)

t = y]

y
= (11)

EQ[e
−r(u−t)F

(β)
u 1{mF (t,u)>β}|F (β)

t = y]

y
+
EQ[e

−r(u−t)F
(β)
u 1{mF (t,u)6β}|F (β)

t = y]

y
.

To prove that limy→∞
EQ[e

−r(u−t)F
(β)
u |F

(β)
t =y]

y
= 1, we show that the first term of expres-

sion (11) goes to 1 as y → ∞, and then show that the second term goes to 0 as y → ∞.

Let Ct = e
−c

∫ t

0 1
{F

(β)
s <β}

ds
and note that Ct is Ft-measurable. Observe that if F

(β)
t = CtSt >

β, then

F (β)
u 1{mF (t,u)>β} = CtSu1{mS(t,u)>

β

Ct
}, a.s. for t < u 6 T, (12)

since the fee is not paid when the account value is above β. It follows that

EQ[e
−r(u−t)F (β)

u 1{mF (t,u)>β}|F (β)
t = y] = CtEQ

[
e−r(u−t)Su1{mS(t,u)>

β

Ct
} | St =

y

Ct

]
. (13)

The expectation on the right-hand side of equation (13) is the price of a down-and-out
contract on the underlying stock with barrier β/Ct and maturity u. Under the Black-
Scholes model, the price of this option has a closed-form solution (see, for example, Chapter
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18 of Björk (2004)), and we can write

CtEQ

[
e−r(u−t)Su1{mS(t,u)>

β

Ct
}|St =

y

Ct

]
=

yN
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
ln y

β
+
(
r + σ2

2
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σ
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
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(
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) 2r
σ2

N



ln β

y
+
(
r + σ2

2

)
(u− t)

σ
√
u− t


 ,

where N (·) denotes the standard normal cumulative distribution function. Thus,

CtEQ[e
−r(u−t)F

(β)
u 1{mF (t,u)>β}|F (β)

t = y]

y

= N
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ln
(
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ln
(

β

y
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(
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2
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σ
√
u− t


 .

The result follows since limz→∞ N (z) = 1 and limz→−∞ N (z) = 0.

To show that the second term on the right-hand side of (11) vanishes for large values of y,
we first note that

EQ

[
e−r(u−t)F

(β)
u 1{mF (t,u)6β}|F (β)

t = y
]

y
6

EQ

[
e−r(u−t)Su1{mS(t,u)6

β

Ct
}|St =

y

Ct

]

y
, (14)

since for any 0 6 t 6 T , Ft = StCt 6 St, a.s. The right-hand side of equation (14) is the
price of a down-and-in contract on the underlying stock with barrier β/Ct. The price of
this contract also has a closed-form solution (again, see Chapter 18 of Björk (2004)), which
allows us to write

EQ[e
−r(u−t)F

(β)
u 1{mF (t,u)6β}|F (β)

t = y]

y
6

1
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)}
.

Since limy→−∞N (y) = 0, limy→∞
EQ[e

−r(T−t)F
(β)
T

1{mF (t,T )6β}|F
(β)
t =y]

y
= 0.
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Then, we observe that

EQ
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e−r(T−t)F

(β)
T T−tpx+t +

∫ T

t

e−r(u−t)F (β)
u u−tpx+tλx+udu|F (β)

t = y

]

= T−tpx+tEQ[e
−r(T−t)F

(β)
T |F (β)

t = x] +

∫ T

t
u−tpx+tλx+uEQ[e

−r(u−t)F (β)
u |F (β)

t = y]du.

Taking the limit as y → ∞, we have

lim
y→∞

{
T−tpx+tEQ[e

−r(T−t)F
(β)
T |F (β)

t = y] +
∫ T

t u−tpx+tλx+uEQ[e
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(β)
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t = y]du
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�

Lemma A.2. Let F
(β)
t , 0 6 t 6 T , be as defined in Section 2. Then,

lim
y→∞

y + supτ∈Tt EQ[e
−r(τ−t)(GT − F

(β)
τ )+|F (β)

t = y]

y
= 1,

where (GT −F (β)
τ )+ = max(GT −F (β)

τ , 0) and where Tt is the set of all stopping times larger
than t and bounded by T .

Proof. Denote by Put(t, St, T,GT , δ) the price at time t of an American put option with
strike GT and maturity T on a stock St paying dividends at a continuous rate δ. Using

ST e
−c(T−t)

St

<
F

(β)
T

F
(β)
t

<
ST

St

, a.s.,

it can be shown12 that

Put(t, y, T,GT , 0) 6 sup
τ∈Tt

EQ[e
−r(τ−t)(GT − F (β)

τ )+|F (β)
t = y] 6 Put(t, y, T,GT , c).

Since ∀δ > 0, limy→∞ Put(t, y, T,GT , δ) = 0, the desired result follows from

lim
y→∞

EQ[e
−r(T−t)(GT − FT )

+|F (β)
t = y]

y
= 0.

�

12To do so, use, for example, Equation (10) of Kim and Yu (1996).
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Using Lemmas A.1 and A.2, we can now prove (5) by showing

lim
y→∞

V (t, y)

y
= 1, (15)

where V (t, y) is the price at t of the VA contract with β < ∞, when F
(β)
t = y. First, we

show that

EQ[e
−r(T−t)F

(β)
T T−tpx+t +

∫ T

t

e−r(u−t)F (β)
u u−tpx+tλx+udu|F (β)

t = y]

6 V (t, F
(β)
t ) 6 F

(β)
t + sup

τ∈Tt

EQ[e
−r(τ−t)(GT − F (β)

τ )+|Ft]. (16)

To get the first inequality, observe that the full value of the contract is always less than or
equal to its value without the surrender option.

To show the second inequality, recall that the payoff of the contract is either (1− κu)F
(β)
u

if the contract is surrendered at time u < T , or F
(β)
u +(Gu−F

(β)
u )+ 6 F

(β)
u +(GT −F

(β)
u )+

a.s. at time t < u 6 T if the policyholder dies before maturity or if the contract is kept
until T (this follows from the definition of Gt, 0 6 t 6 T in Section 2.2, which leads to

Gu 6 GT for u 6 T ). Thus, investing in the fund F
(β)
t and buying an American put option

on the fund with strike GT will always yield a higher payout than the VA contract. It
follows that

V (t, F
(β)
t ) 6 Ft + sup

τ∈Tt

EQ[e
−r(τ−t)(GT − F (β)

τ )+|Ft].

From (16),

EQ[e
−r(T−t)F

(β)
T T−tpx+t +

∫ T

t
e−r(u−t)F

(β)
u u−tpx+tλx+udu|F (β)

t = y]

y

6
V (t, y)

y
6
F

(β)
t + supτ∈Tt EQ[e

−r(τ−t)(GT − F
(β)
τ )+|F (β)

t = y]

y
. (17)

To complete the proof of (15), it suffices to take the limit of (17) as y → ∞. The result
follows from Lemma A.1 and Lemma A.2, since the first and the third terms of (17) both
go to 1 in the limit. �

B Additional details on the PDE pricing approach

We use a Crank-Nicolson finite difference scheme to solve the PDE in (3). The equation is
discretized over a rectangular grid representing the discretized and upper truncated domain
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of (t, F
(β)
t ). We consider time steps dt = 0.001 on the time domain [0, T ]. Since the value

of the VA contract can be computed exactly when F
(β)
t = 0 (see equation (4)), we use it

to obtain the lower boundary in the grid in the space dimension. The upper truncation
point of the grid must be large enough so that the asymptotic results derived in Section 2
can be used reliably to approximate the contract price at the highest fund values in the
grid. In our numerical illustrations, we use a grid for F

(β)
t which spans from 0 to 500

with steps of dx = 0.01. We tried higher levels for the upper bound, but found that this
choice had marginal to no influence on numerical results. When an optimal surrender
boundary exists for all t ∈ [0, T ], it is not necessary to consider values that are above this
boundary, because the price of the contract is known exactly in this region (and equal
to the value of the surrender benefit). In these cases, we use a lower maximal value to
decrease computational time.

We validated the results with an explicit finite difference method, Monte Carlo simulations
and the integral representation given in Bernard, Hardy, and MacKay (2013), and found
no major convergence issues.

C Proof of Proposition 3.1

Proof. First, suppose that the surrender charge κu, for t < u < T , is sufficiently high to
eliminate the surrender incentive for t < u < T . This situation is possible because we can
consider the extreme case where κu = 1, for t < u < T . Then, the continuation value of
the contract at time t must simply be the risk-neutral discounted expectation of death and
maturity benefits, and be strictly greater than the surrender benefit:

V ∗(t, Ft) = EQ

[
e−r(T−t)max(GT , FT )T−tpx+t +

∫ T

t

e−r(u−t)max(Gu, Fu)u−tpx+tλx+udu

∣∣∣∣ Ft

]

> Ft(1− κt), ∀Ft > 0.

The previous inequality can be rewritten as κt > 1− V ∗(t,Ft)
Ft

. Since ∀Ft > 0,

V ∗(t, Ft) = Ft

(
e−c(T−t)

T−tpx+t +

∫ T

t

e−c(u−t)
u−tpx+tλx+udu

)

+ EQ

[
e−r(T−t)(GT − FT )

+
T−tpx+t +

∫ T

t

e−r(u−t)(Gu − Fu)
+
u−tpx+tλx+udu

∣∣∣∣ Ft

]

> Ft

(
e−c(T−t)

T−tpx+t +

∫ T

t

e−c(u−t)
u−tpx+tλx+udu

)
,

and limFt→∞
V ∗(t,Ft)

Ft
= e−c(T−t)

T−tpx+t+
∫ T

t
e−c(u−t)

u−tpx+tλx+udu, then the minimal surren-
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der penalty that can be charged at time t while the inequality above is satisfied corresponds
to

κ⋆t = max

(
1− inf

Ft>0

{
V ∗(t, Ft)

Ft

}
, 0

)

= max

(
1− lim

Ft→∞

V ∗(t, Ft)

Ft

, 0

)

= 1− e−c(T−t)
T−tpx+t −

∫ T

t

e−c(u−t)
u−tpx+tλx+udu.

�

D Proof of Proposition 4.1

Proof. We first consider the case without surrender charges, i.e., κt = 0, ∀t, that the fee is
only paid below β, and that F

(β)
t > β at time t. Consider the stopping time

τβ = inf
{
t < u < T : F (β)

u < β
}
,

with the convention that τβ = T , if the barrier β is never reached. Then, we can write,

V ∗(t, F
(β)
t ) = sup

τ∈Tt

EQ

[
e−r(τ−t)ψ(τ, F (β)

τ )τ−tpx+t +

∫ τ
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]

> EQ
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]

> EQ
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t

e−r(u−t)F (β)
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∣∣∣∣ Ft

]

= EQ
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e−r(τβ−t)F (β)

τβ τβ−tpx+t +

∫ τβ

t

e−r(u−t)F (β)
u u−tpx+tλx+udu

)
1{τβ∈(t,T )}

∣∣∣∣Ft

]

+ EQ

[(
e−r(T−t)F

(β)
T T−tpx+t +

∫ T

t

e−r(u−t)F (β)
u u−tpx+tλx+udu

)
1{τβ=T}

∣∣∣∣Ft

]

> EQ

[
e−r(τβ−t)F (β)

τβ
1{τβ∈(t,T )}

∣∣∣ Ft

]
+ EQ

[
e−r(T−t)F

(β)
T 1{τβ=T}

∣∣∣ Ft
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= βEQ

[
e−r(τβ−t)

1{τβ∈(t,T )} | Ft

]
+ EQ

[
e−r(T−t)F

(β)
T 1{τβ=T} | Ft

]
,

where the first term is the payoff of a down rebate option which pays β if the fund F
(β)
t

reaches β before maturity T and zero otherwise, and the second term is the payoff of
a down-and-out European call option with zero strike which pays F

(β)
T at maturity T ,
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provided that F
(β)
u > β, for t 6 u 6 T . Since the combined payoff of these two options

can be replicated by holding the fund F
(β)
t and selling it as soon as F

(β)
t = β, simple no-

arbitrage arguments imply that the total price of these two options is exactly F
(β)
t , which

gives
V ∗(t, F

(β)
t ) > F

(β)
t . (18)

Note that the inequality in (18) becomes an equality if and only if τβ is the optimal

strategy that can be undertaken and GT < β (which implies that max(Gu, F
(β)
u ) = F

(β)
u ,

∀u ∈ [t, τβ]). The equality, V
∗(t, F

(β)
t ) = F

(β)
t , therefore holds if and only if it is optimal to

surrender the VA contract just below β, for all t < u < T . If this occurs, by definition of
the optimal surrender region given in Section 2.2 (V ∗(t, F

(β)
t ) = F

(β)
t induces surrender),

the policyholder surrenders at time t, ∀F (β)
t > β. However, strictly speaking, the policy-

holder is actually indifferent to lapse because the surrender benefit is exactly equal to the
continuation value of the contract assuming a surrender strategy τβ.

Now, consider the case where the surrender charge function κu, t 6 u 6 T , is a decreasing
function of u, and is strictly positive at t:

V ∗(t, F
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t ) > EQ
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βEQ
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∣∣ Ft
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(19)

= (1− κt)F
(β)
t ,

as the term inside the braces in equation (19) was shown to be exactly F
(β)
t . This result

implies that in the presence of surrender charges, it is never optimal to surrender the VA
contract when the fund is above or equal to the fee threshold barrier β. �
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