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Abstract In this chapter, we study the effect of the fee structure of a variable annuity
on the embedded surrender option. We compare the standard fee structure offered
in the industry (fees set as a fixed percentage of the variable annuity account) with
periodic fees set as a fixed, deterministic amount. Surrender charges are also taken
into account. Under fairly general conditions on the premium payments, surren-
der charges and fee schedules, we identify the situation when it is never optimal
for the policyholder to surrender. Solving partial differential equations using finite
difference methods, we present numerical examples that highlight the effect of a
combination of surrender charges and deterministic fees in reducing the value of the
surrender option and raising the optimal surrender boundary.

1 Introduction

A variable annuity (VA) is a unit-linked insurance product which guarantees a cer-
tain amount at some future dates. Usually the policyholder pays an initial premium
for the contract. This premium is invested in a mutual fund chosen by the policy-
holder. There are different kinds of VAs defined by the type of guarantees embedded
in the contract (for more details see Hardy [9]). In this paper we focus on a variable
annuity contract that pays the maximum of the mutual fund value and a guaran-
teed amount at maturity. This type of VA is referred to as a guaranteed minimum
accumulation benefit (GMAB) (see Bauer et al. [1]).

Typically the fee that covers the management of the VA and embedded financial
guarantees is set as a constant percentage of the VA account and withdrawn directly
from it at regular intervals. When the account value is high, the financial guarantee
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is worth very little, but the fee is still being paid as the same percentage. Thus it
represents an incentive for the policyholder to surrender the contract and take the
amount accumulated in the account. Such surrenders represent an important risk for
VA issuers as the expenses linked to the sale of the policy are typically reimbursed
through the fees collected throughout the duration of the contract. As exposed by
Kling et al. in [11], unexpected surrenders also compromise the efficiency of dy-
namic hedging strategies.

There are various ways to reduce the incentive to surrender a VA contract with
guarantees. For example, insurance companies usually impose surrender charges
which reduce the amount available at surrender. Milevsky and Salisbury [13] argue
that these charges are necessary for VA contracts to be both hedgeable and mar-
ketable. The design of VA benefits can also discourage policyholders from surren-
dering. Kling et al. [11] discuss for example the impact of ratchet options (possibility
to reset the maturity guarantee as the fund value increases) to convince policyhold-
ers to keep the VA alive. Yet another way to reduce the incentive to surrender can be
to modify the way fees are paid from the VA account. As explained above, the typ-
ical constant percentage fee structure leads to a mismatch between the fee paid and
the value of the financial guarantee, which can discourage the policyholder from
staying in the contract.1 By reducing the fee paid when the value of the financial
guarantee is low, it is possible to reduce the value of the real option to surrender
embedded in a VA. The new fee structure can take different forms. For example,
Bernard, Hardy and MacKay [2] suggest to set a certain account value above which
no fee will be paid. This is shown to modify the rational policyholder’s surrender
incentive. In this paper, we explore another fee structure so that part of (or all) the
fee is paid as a deterministic periodic amount. The intuition behind this fee struc-
ture is that the amount will represent a lower percentage of the account value as the
value of the financial guarantee decreases. This will affect the surrender incentive,
and reduce the additional value created by the possibility to surrender the contract.

To explore the effect of the deterministic fee amount on the surrender incentive,
we consider a VA with a simple GMAB. We assume that the total fee withdrawn
from the VA account throughout the term of the contract is set as the sum of a fixed
percentage c of the account value, and a deterministic, pre-determined amount pt
at time t (in other words, the deterministic amount does not need to be constant).2

Our paper constitutes a significant extension of the results obtained on the optimal
surrender strategy for a fee set as a fixed percentage of the fund ([4]), since the de-
terministic fee structure increases the complexity of the dynamics of the VA account
value. For this reason, we need to resort to PDE methods to obtain the optimal sur-

1 Specifically, the policyholder has the option to surrender the contract and to receive a “surrender
benefit” which can be more valuable than the contract itself. This additional value, as well as the
optimal surrender strategy, is explored and quantified by Bernard, MacKay and Muehlbeyer in [4]
in the case when the fees are paid as a percentage of the underlying fund.
2 Note that the deterministic amount component of the fee can be interpreted as a variable per-
centage of the account value Ft . In fact, let ρ denote the percentage of the fund value that yields
the same fee amount as the deterministic amount pt . Then, ρ is a function of time and of the fund
value Ft , and can be computed as ρ(t,Ft) =

pt
Ft

. Then, ρ(t,Ft)Ft = pt is the fee paid at time t.
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render strategy when a portion of the fee is set as a deterministic amount. This paper
also extends the work done on state-dependent fee structures, since Bernard, Hardy
and MacKay [2] do not quantify the reduction in the surrender incentive resulting
from the new fee structure.

Throughout the paper, our main goal is to investigate the impact of the determin-
istic fee amount on the value of the surrender option. In Section 2, we describe the
model and the VA contract. Section 3 introduces a theoretical result and discusses
the valuation of the surrender option. Numerical examples are presented in Section
4 and Section 5 concludes.

2 Assumptions and Model

Consider a market with a bank account yielding a constant risk-free rate r and an
index evolving as in the Black-Scholes model so that

dSt

St
= rdt +σdWt ,

under the risk-neutral measure Q, where σ > 0 is the constant instantaneous volatil-
ity of the index. Let Ft be the natural filtration associated with the Brownian motion
Wt .

In this paper, we use a Black-Scholes setting since its simplicity allows us to
compute prices explicitly and thus to study the surrender incentive precisely. More
realistic market models could be considered, but resorting to Monte Carlo methods
or more advanced numerical methods would be required. Since the focus of this
paper is on the surrender incentive, we believe that the Black-Scholes model’s ap-
proximation of market dynamics is sufficient to provide insight on the effect of the
deterministic amount fee structure.

2.1 Variable Annuity

We consider a VA contract with an underlying fund fully invested in the index S. At
time t, we assume that the fee paid is the sum of a constant percentage c> 0 of the
account value and a deterministic amount pt . Setting pt = 0, we will find back the
results commonly used in the literature with the fee being only paid as a percentage
of the fund (see for example [4]).

The motivation to study periodic deterministic fees is that the surrender incen-
tives when the fees are paid as a fixed percentage of the fund are larger than when
the fees are set as a deterministic amount. This will be illustrated via numerical
examples in Section 4.

We further assume that the investment of the policyholder is P0 at time 0, and
that regular additional premiums at are paid at time t. Additional contributions are
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common in variable annuities but they are regularly neglected in the literature and
most academic research focuses on the single premium case as it is simpler. When
additional contributions can be made to the account throughout time, VAs are called
Flexible Premiums Variable Annuities (FPVAs). Chi and Lin [7] provide examples
of such VAs where the policyholder is given the choice between a single premium
and a periodic monthly payment in addition to some initial lump sum. Analytical
formulae for the value of such contracts can be found in [8] and [10]. In the first part
of this chapter, we show how flexible premium payments influence the surrender
value.

We assume that all premiums paid at 0 and at later times t are invested in the
fund. All fees (percentage or fixed fees) are taken from the fund. We need to model
the dynamics of the fund. Our approach is inspired by Chi and Lin [7]. For the sake
of simplicity, we assume that all cash flows happen in continuous time, so that a
fixed payment of A at time 1 (say, end of the year) is similar to a payment made con-
tinuously over the interval [0,1]. Due to the presence of a risk-free rate r, an amount
paid at time T equal to A is equivalent to an instantaneous contribution of at dt at
any time t ∈ (0,1] so that the annual amount paid per year is A =

∫ 1
0 ater(1−t)dt. By

abuse of notation, if at is constant over the year, we will write that at is the annual
rate of contribution per year (although there is no compounding effect).

Specifically, the dynamics of the fund can be written as follows

dFt = (r− c)Ftdt +σFtdWt +atdt− ptdt

with F0 = P0, and where Ft denotes the value of the fund at time t, at is the annual
rate of contributions, c is the annual rate of fees, and pt is the annual amount of fee
to pay for the options. Similarly as [7] it is straightforward to show that

Ft = F0e(r−c− σ2
2 )t+σWt +

∫ t

0
(as− ps)e(r−c− σ2

2 )(t−s)+σ(Wt−Ws)ds, t > 0,

that is
Ft = Ste−ct +

∫ t

0
(as− ps)e−c(t−s) St

Ss
ds, (1)

in particular P0 = F0 = S0. To simplify the notation, we will write

Ft = Ste−ct +
∫ t

0
bse−c(t−s) St

Ss
ds, (2)

where bs = as− ps can take values in R. While in the case of regular contributions,
bs is typically positive, it can also be negative, for example in the single premium
case, or if the regular premiums are very low. We will split bs into contributions as
and deterministic fees ps when it is needed for the interpretation of the results.

This formulation can be seen as an extension of the case studied in [7], where
it is assumed that a constant contribution parameter at = a for all t and there is no
periodic fees, so that pt = 0. It is clear from (2) that the fund value becomes path-
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dependent and involves a continuous arithmetic average. Without loss of generality,
let F0 = S0.

2.2 Benefits

We assume that there is a guaranteed minimum accumulation rate g < r on all the
contributions of the policyholder until time t so that the accumulated guaranteed
benefit Gt at time t has dynamics

dGt = gGtdt +atdt

where G0 = P0 at time 0. Thus, at time t the guaranteed amount Gt can be expressed
as

Gt = P0egt +
∫ t

0
aseg(t−s)ds.

When the annual rate of contribution is constant (at = a), the guaranteed value can
be simplified to

Gt = P0egt +a
(

egt −1
g

1{g>0}+ t1{g=0}

)
.

[7] develop techniques to price and hedge the guarantee at time t. Using their numer-
ical approach it is possible to estimate the fair fee for the European VA (Proposition
3 in their paper).

As in [4] and [13], we assume that the policyholder has the option to surrender
the policy at any time t and to receive a surrender benefit at surrender time equal to

(1−κt)Ft

where κt is a penalty percentage charged for surrendering at time t. As presented for
instance in [3], [13] or [15], a standard surrender penalty is decreasing over time.
Typical VAs sold in the US have a surrender charge period. In general, the maxi-
mum surrender charge is around 8% of the account value and decreases during the
surrender charge period. A typical example is New York Life’s Premier Variable
Annuity ([14]), for which the surrender charge starts at 8% in the first contract year,
decreases by 1% per year to reach 2% in year 7. From year 8 on, there is no penalty
on surrender. In another example, “the surrender charge is 7% during the first Con-
tract Year and decreases by 1% each subsequent Contract Year. No surrender charge
is deducted for surrenders occurring in Contract Years 8 and later” ([17]).
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3 Valuation of the surrender option

In this section, we discuss the valuation of the variable annuity contract with ma-
turity benefit and surrender option.3 We first present a sufficient condition to elimi-
nate the possibility of optimal surrender. We then explain how we evaluate the value
of the surrender option using partial differential equations (PDEs). We consider a
variable annuity contract with maturity benefit only, which can be surrendered. We
choose to ignore the death benefits that are typically added to that type of contract
since our goal is to analyze the effect of the fee structure on the value of the surren-
der option.

3.1 Notation and Optimal Surrender Decision

We denote by υ(t,Ft) and V (t,Ft) the value of the contract without and with sur-
render option, respectively. In this paper, we ignore death benefits and assume that
the policyholder survives to maturity.4 Thus, the value of the contract without the
surrender option is simply the risk-neutral expectation of the payoff at maturity,
conditional on the filtration up to time t.

υ(t,Ft) = E[e−r(T−t) max(GT ,FT )|Ft ] (3)

We assume that the difference between the value of the maturity benefit and the
full contract is only attributable to the surrender option, which we denote by e(t,Ft).
Then, we have the following decomposition.

V (t,Ft) = υ(t,Ft)+ e(t,Ft) (4)

The value of the contract with surrender option is calculated assuming that the
policyholder surrenders optimally. This means that the contract is surrendered as
soon as its value drops below the value of the surrender benefit. To express the
total value of the variable annuity contract, we must introduce further notation. We
denote by Tt the set of all stopping times τ greater than t and bounded by T . Then
we can express the continuation value of the VA contract as

V ∗(t,Ft) = sup
τ∈Tt

E[e−r(τ−t)
ψ(τ,Fτ)],

where

ψ(t,x) =

{
(1−κt)x, if t ∈ (0,T )
max(GT ,x), if t = T

3 In this paper, we quantify the value added by the possibility for the policyholder to surrender
his policy. We call it the surrender option, as in [13]. It is not a guarantee that can be added to the
variable annuity, but rather a real option created by the fact that the contract can be surrendered.
4 See [2] for instance for a treatment on how to incorporate mortality benefits.
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is the payoff of the contract at surrender or maturity. Finally, we let St be the optimal
surrender region at time t ∈ [0,T ]. The optimal surrender region is given by the fund
values for which the surrender benefit is worth more than the VA contract if the
policyholder continues to hold it for at least a small amount of time. Mathematically
speaking, it is defined by

St = {Ft : V ∗(t,Ft)6 ψ(t,Ft)}.

The complement of the optimal surrender region St will be referred to as the con-
tinuation region. We also define Bt , the optimal surrender boundary at time t, by

Bt = inf
Ft∈[0,∞)

{Ft ∈St}.

3.2 Theoretical Result on Optimal Surrender Behaviour

According to (2) the account value Ft can be written as follows at time t

Ft = e−ctSt +
∫ t

0
bse−c(t−s) St

Ss
ds, t > 0,

and at time t +dt, it is equal to

Ft+dt = e−c(t+dt)St+dt +
∫ t+dt

0
bse−c(t+dt−s) St+dt

Ss
ds.

Proposition 3.1 (Sufficient condition for no surrender) For a fixed time t ∈ [0,T ],
a sufficient condition to eliminate the surrender incentive at time t is given by

(κ ′t +(1−κt)c)Ft < bt(1−κt), (5)

where κ ′t =
∂κt
∂ t . Here are some special cases of interest:

• When at = pt = 0 (no periodic investment, no periodic fee) and κt = 1−e−κ(T−t)

(situation considered by [4]) then bt = 0 and (5) becomes

κ > c.

• When at = 0 (no periodic investment, i.e. a single lump sum paid at time 0), then
bt =−pt 6 0. Assume that pt > 0 so that bt < 0 thus

• If κ ′t + (1− κt)c > 0 (for example if κ is constant), then the condition can
never be satisfied and no conclusion can be drawn.

• If κ ′t +(1−κt)c < 0 then it is not optimal to surrender when

Ft >
−pt(1−κt)

κ ′t +(1−κt)c
.
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• When κt = κ and bt = b are constant over time, the condition (5) can be rewritten
as

Ft <
b(1−κ)

c(1−κ)
=

b
c
.

Remark 3.1 Proposition 3.1 shows that in the absence of periodic fees and invest-
ment, an insurer can easily ensure that it is never optimal to surrender by choosing
a surrender charge equal to 1− e−κt at time t, with a penalty parameter κ higher
than the percentage fee c. Proposition 3.1 shows that it is also possible to eliminate
the surrender incentive when there are periodic fees and investment opportunities,
but the conditions are more complicated.

Proof. Consider a time t at which it is optimal to surrender. This implies that for
any time interval of length dt > 0, it is better to surrender at time t than to wait until
time t +dt. In other words, the surrender benefit at time t must be at least equal to
the expected discounted value of the contract at time t +dt, and in particular larger
than the surrender benefit at time t +dt. Thus

(1−κt)Ft > E[e−rdt(1−κt+dt)Ft+dt |Ft ]

Using the martingale property for the discounted stock price St and the indepen-
dence of increments for the Brownian motion, we know that E[St+dte−rdt ] = St and
E
[

St+dt
Ss

∣∣∣Ft

]
= E

[
St+dt

Ss

]
= erdt thus

E[e−rdtFt+dt |Ft ] = e−c(t+dt)St +
∫ t

0
bse−c(t+dt−s) St

Ss
ds

+
∫ t+dt

t
bse−c(t+dt−s)e−rdtE

[
St+dt

Ss

]
ds,

= e−c(t+dt)St +
∫ t

0
bse−c(t+dt−s) St

Ss
ds+

∫ t+dt

t
bse−c(t+dt−s)ds,

= e−cdtFt + e−cdt
∫ t+dt

t
bse−c(t−s)ds. (6)

Thus

(1−κt)Ft > (1−κt+dt)

(
e−cdtFt + e−cdt

∫ t+dt

t
bse−c(t−s)ds

)
We then use κt+dt = κt +κ ′t dt+o(dt), e−cdt = 1−cdt+o(dt) and

∫ t+dt
t bse−c(t−s)ds=

btdt +o(dt) to obtain

(1−κt)Ft > (1−κt −κ
′
t dt)((1− cdt)Ft +(1− cdt)btdt)+ j(dt)

which can be further simplified into

(κ ′t +(1−κt)c)Ftdt > bt(1−κt)dt + j(dt). (7)
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where the function j(dt) is o(dt). Since this holds for any dt > 0, we can divide (7)
by dt and take the limit as dt→ 0. Then, we get that if it is optimal to surrender the
contract at time t, then

(κ ′t +(1−κt)c)Ft > bt(1−κt).

It follows that if (κ ′t +(1−κt)c)Ft < bt(1−κt), it is not optimal to surrender the
contract at t. �

3.3 Valuation of the surrender option using PDEs

To evaluate the surrender option e(t,Ft), we subtract the value of the maturity ben-
efit from the value of the VA contract. These values can be compared to American
and European options, respectively, since the guarantee in the former is only trig-
gered when the contract expires while the latter can be exercised at any time before
maturity.

From now on, we assume that the deterministic fee pt is constant over time, so
that pt = p for any time t. We also assume that the policyholder makes no contribu-
tion after the initial premium (so that at = 0 for any t).

It is well-known5 that the value of a European contingent claim on the fund value
Ft follows the following PDE:

∂υ

∂T
+

1
2

∂ 2υ

∂F2
t

F2
t σ

2 +
∂υ

∂Ft
(Ft(r− c)− p)− rυ = 0. (8)

Note that Equation (8) is very similar to the Black-Scholes equation for a con-
tingent claim on a stock that pays dividends (here, the constant fee c represents the
dividends), with the addition of the term ∂υ

∂Ft
p resulting from the presence of a de-

terministic fee. Since it represents the contract described in Section 2, Equation (8)
is subject to the following conditions:

υ(T,FT ) = max(GT ,FT )

lim
Ft→0

υ(t,Ft) = GT e−r(T−t).

The last condition results from the fact that when the fund value is very low,
the guarantee is certain to be triggered. When Ft → ∞, the problem is unbounded.
However, we have the following asymptotic behaviour:

lim
Ft→∞

υ(t,Ft) = Et [FT e−r(T−t)], (9)

which stems from the value of the guarantee approaching 0 for very high fund val-
ues. We will use this asymptotic result to solve the PDE numerically, when truncat-

5 See, for example, [5], Section 7.3.
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ing the grid of values for Ft . The expectation in (9) is easily calculated and is given
in the proof of Proposition 3.1.

As it is the case for the American put option6, the VA contract with surrender
option gives rise to a free boundary problem. In the continuation region, V ∗(t,Ft)
follows Equation (8), the same equation as for the contract without surrender option.
However, in the optimal surrender region, the value of the contract with surrender is
the value of the surrender benefit:

V ∗(t,Ft) = ψ(t,Ft), t ∈ [0,T ],Ft ∈St . (10)

For the contract with surrender, the PDE to solve is thus subject to the following
conditions:

V ∗(T,FT ) = max(GT ,FT )

lim
Ft→0

V ∗(t,Ft) = GT e−r(T−t)

lim
Ft→Bt

V ∗(t,Ft) = ψ(t,Bt).

lim
Ft→Bt

∂

∂Ft
V ∗(t,Ft) = 1−κt .

For any time t ∈ [0,T ], the value of the VA with surrender is given by

V (t,Ft) = max(V ∗(t,Ft),ψ(t,Ft)).

This free boundary problem is solved in Section 4 using numerical methods.

4 Numerical Example

To price the VA using a PDE approach, we modify Equation (8) to express it in
terms of xt = logFt . We discretize the resulting equation over a rectangular grid
with time steps dt = 0.0001 (dt = 0.0002 for T = 15) and dx = σ

√
3dt (following

suggestions by Racicot and Théoret [16]), from 0 to T in t and from 0 to log450 in
x. We use an explicit scheme with central difference in x and in x2.

Throughout this section, we assume that the contract is priced so that only the
maturity benefit is covered. In other words, we set c and p such that

P0 = υ(t,Ft), (11)

where P0 denotes the initial premium paid by the policyholder. In this section, when
the fee is set in the manner, we call it the fair fee, even if it does not cover the full
value of the contract. We set the fee in this manner to calculate the value added by
the possibility to surrender.

6 See, for example, [6]
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4.1 Numerical Results

We now consider variable annuities with the maturity benefit described in Section
2. We assume that the initial premium P0 = 100, that there are no periodic premium
(as = a = 0), that the deterministic fee is constant (pt = p) and that the guaranteed
roll-up rate is g = 0. We further assume that the surrender charge, if any, is of the
form κt = 1− eκ(T−t), and that r = 0.03 and σ = 0.2.

For contracts with and without surrender charge and with maturity 5, 10 and 15
years, the results are presented in Table 1. In each case, the fee levels c and p are
chosen such that P0 = υ(t,Ft). As a percentage of the initial premium, the fair fee
when it is paid as a deterministic amount is higher than the fair constant percentage
fee. In fact, for high fund values, the deterministic fee is lower than the amount paid
when the fee is set as a constant percentage. But when the fund value is low, the
deterministic fee represents a larger proportion of the fund compared to the constant
percentage fee. This higher proportion drags the fund value down and increases the
option value. The effect of each fee structure on the amount collected by the insurer
can explain the difference between the fair fixed percentage and deterministic fees.

T = 5 T = 10 T = 15
Surrender Option Surrender Option Surrender Option

Fee κ Fee κ Fee κ

c p 0% 0.5% c p 0% 0.5% c p 0% 0.4%
0.00% 4.150 3.09 2.09 0.00% 2.032 3.07 1.02 0.00% 1.259 2.76 0.23
1.00% 2.971 3.32 2.33 0.50% 1.387 3.50 1.46 0.30% 0.842 3.30 0.77
2.00% 1.796 3.56 2.57 1.00% 0.744 3.92 1.89 0.60% 0.427 3.84 0.84
3.53% 0.000 3.92 2.94 1.58% 0.000 4.43 2.39 0.91% 0.000 4.40 1.86

Table 1 Value of the surrender option in 5-year, 10-year and 15-year variable annuity contracts for
various fee structures and surrender charges. For the 15-year contract, we lowered the surrender
charge parameter to κ = 0.4% to ensure that the optimal surrender boundary is always finite.

The results in Table 1 show that when the fee is set as a fixed amount, the value of
the surrender option is always lower than when the fee is expressed as a percentage
of the fund. When a mix of both types of fees is applied, the value of the surrender
option decreases as the fee set as a percentage of the fund decreases. When the fee
is deterministic, a lower percentage of the fund is paid out when the fund value is
high. Consequently, the fee paid by the policyholder is lower when the guarantee
is worth less reducing the surrender incentive. This explains why the value of the
surrender option is lower for deterministic fees. This result can be observed both
with and without surrender charges. However, surrender charges decrease the value
of the surrender option, as expected. The effect of using a deterministic amount fee,
instead of a fixed percentage, is even more noticeable when a surrender charge is
added. A lower surrender option value means that the possibility to surrender adds
less value to the contract. In other words, if the contract is priced assuming that
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policyholders do not surrender, unexpected surrenders will result in a smaller loss,
on average.

Figure 1 shows the optimal surrender boundaries for the fee structures presented
in Table 1 for 10-year contracts. As expected, the optimal boundaries are higher
when there is a surrender charge. Those charges are put in place in part to discourage
policyholders from surrendering early. The boundaries are also less sensitive to the
fee structure when there is a surrender charge. In fact, when there is a surrender
charge, setting the fee as a fixed amount leads to a higher optimal boundary during
most of the contract. This highlights the advantage of the fixed amount fee structure
combined with surrender charges. Without those charges, the fixed fee amount could
lead to more surrenders. We also note that the limiting case p = 0 corresponds to
the situation when fees are paid as a percentage of the fund. The optimal boundary
obtained using the PDE approach in this paper coincides with the optimal boundary
derived in [4] by solving an integral equation numerically.

0 2 4 6 8 10

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
1

5
0

1
6

0

Time (in years)

F
u

n
d

 v
a

lu
e

c=0, p=2.0321
c=0.0050, p=1.3875
c=0.0100, p=0.7443
c=0.0158, p=0

0 2 4 6 8 10

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
1

5
0

1
6

0

Time (in years)

F
u

n
d

 v
a

lu
e

c=0, p=2.0321
c=0.0050, p=1.3875
c=0.0100, p=0.7443
c=0.0158, p=0

κ = 0 κ = 0.005

Fig. 1 Optimal surrender boundary when T = 10.

Table 1 also shows the effect of the maturity combined with the fee structure on
the surrender option. For all maturities, setting the fee as a fixed amount instead of
a fixed percentage has a significant effect on the value of the surrender option. This
effect is amplified for longer maturities. As for the 10-year contract, combining the
fixed amount fee with a surrender charge further reduces the value of the surrender
option, especially when T = 15. The optimal surrender boundaries for different fee
structures when T = 15 are presented in Figure 2. For longer maturities such as this
one, the combination of surrender charges and deterministic fee raises the surrender
boundary more significantly.
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In all cases, the decrease in the value of the surrender option caused by the com-
bination of a deterministic amount fee and a surrender charge is significant. In our
example with a 15-year contract, moving from a fee entirely set as a fixed percent-
age to a fee set as a deterministic amount reduces the value of the surrender option
by over 85%. This is surprising since the shift in the optimal surrender boundary is
not as significant (as can be observed in Figures 1 and 2). A possible explanation for
the sharp decrease in the surrender option value is that the fee income lost when a
policyholder surrenders when the account value is high is less important, relatively
to the value of the guarantee, as when in the constant percentage fee case.
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Fig. 2 Optimal surrender boundary when T = 15.

5 Concluding Remarks

In this chapter, the maturity guarantee fees are paid during the term of the contract as
a series of deterministic amounts instead of a percentage of the fund, which is more
common in the industry. We give a sufficient condition that allows the elimination
of optimal surrender incentives for variable annuity contracts with fairly general fee
structures. We also show how deterministic fees and surrender charges affect the
value of the surrender option and the optimal surrender boundary. In particular, we
highlight the efficiency of combining deterministic fees and exponential surrender
charges in decreasing the value of the surrender option. In fact, although the optimal
surrender boundary remains at a similar level, a fee set as a deterministic amount
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reduces the value of the surrender option, which makes the contract less risky for
the insurer. This result also suggests that the state-dependent fee suggested in [2]
could also be efficient in reducing the optimal surrender incentive. Future work
could focus on more general payouts (see for example [12] for ratchet and lookback
options, [4] for Asian benefits) in more general market models, and include death
benefits.
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