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Abstract

This paper proposes a technique to derive the optimal surrender strategy for a
variable annuity (VA) as a function of the underlying fund value. This approach is
based on splitting the value of the VA into a European part and an early exercise
premium following the work of Kim and Yu (1996) and Carr, Jarrow, and Myneni
(1992). The technique is first applied to the simplest VA with GMAB (path-
independent benefits) and is then shown to be possibly generalized to the case when
benefits are path-dependent. Fees are paid continuously as a fixed percentage of
the fund value. Our approach is useful to investigate the impact of path-dependent
benefits on surrender incentives.
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1 Introduction

A variable annuity (VA) is a unit-linked insurance product offering a variety of financial
guarantees. Usually the policyholder pays an initial premium to initiate the contract.
This premium is invested in a mutual fund selected by the policyholder. Many types
of guarantees and options can be added to the contract (for more details, see Hardy
(2003)). In this paper we will focus on a variable annuity contract that guarantees a
minimum amount at maturity. This type of VA is referred to as a guaranteed minimum
accumulation benefit (GMAB) (see Bauer, Kling, and Russ (2008)). We study two
cases, one with a point-to-point guarantee linked to the terminal value of the fund and
a guarantee linked to the average value of the fund.

In most cases, the policyholder can choose to lapse the VA contract and receive a
surrender benefit, which is less than or equal to the value accumulated in the under-
lying account. For example Kling, Ruez, and Ruß (2011) show that unexpected lapses
represent a significant risk for the insurer. In fact, selling a VA contract is expensive
and insurers typically reimburse the expense incurred using the fees paid during the first
years of the policy. If the policyholder lapses before the initial expenses are reimbursed,
the insurer may experience a loss. Even if they occur later during the life of the contract,
lapses can be very expensive.

For this reason, the option to lapse the contract needs to be taken into account and
priced in the contract. This is not necessarily simple since assumptions must be made
on the surrender behavior of policyholders. Different approaches have been taken in the
literature, ranging from a simple deterministic surrender rate to more sophisticated mod-
els, like De Giovanni (2010)’s rational expectation and Li and Szimayer (2010)’s limited
rationality. Most of these approaches assume that the policyholder cannot calculate the
exact risk-neutral value of the contract, and that he may be influenced by exogenous
factors.

Another way to approach the surrender problem is to assume the policyholder is
perfectly rational and will surrender their contract only when it is optimal to do so
from a financial perspective. In this approach, the surrender option is analogous to an
American option that can be surrendered at any time before maturity (see Grosen and
Jørgensen (2000)). Assuming that the policyholder is perfectly rational leads to an upper
bound for the price of the surrender option and gives a lot of insight on the intrinsic
value of the options in the VA contract. Although it is not necessarily used to obtain
the final price of the VA contract, it can be very useful to assess the risk of optimal
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surrender. Furthermore, while there are also other reasons why a VA contract might be
surrendered, some policyholders tend to act in a rational way. In their study, Knoller,
Kraut, and Schoenmaekers (2011) investigate various hypothesis for an early surrender.
For one, they analyze the moneyness of the option as a reason to lapse the VA. This
is similar to optimally surrendering the contract when the maturity benefit is out-of-
the-money. They find that financial literacy leads to a higher sensitivity towards the
moneyness. They also examine other reasons for lapsing the contract such as financial
needs of the policyholder or better opportunity costs in times of rising market interest
rates.

While it is common practice for insurers to charge a constant fee rate as a percentage
of the fund value to cover the maturity benefit and other financial guarantees, many
authors assume that all the fees are included in the initial premium (see, for exam-
ple, Grosen and Jørgensen (2002), Bacinello (2003a), Bacinello (2003b), Siu (2005),
Bacinello, Biffis, and Millossovich (2009), Bacinello, Biffis, and Millossovich (2010),
Bernard and Lemieux (2008)). However, as pointed out for instance by Bauer, Kling, and
Russ (2008), Milevsky and Salisbury (2001) and Bernard, Hardy, and MacKay (2013),
a fee paid as a regular constant percentage of the fund might increase the incentive to
surrender the contract before the maturity if the fund value is high. This is due to the
mismatch between the amount of the fee and the value of the guarantee option. When
the fund value is high, the guarantee at maturity is deep out-of-the-money and it is
unlikely that the policyholder will make use of the option at expiration. However, since
the fee is charged as a percentage of the fund value, the amount of the fee is large. This
mismatch represents an incentive to surrender the VA contract and should be taken into
account especially when the policyholder is assumed to lapse optimally. Milevsky and
Salisbury (2001) discuss this issue, and argue that surrender charges are necessary to
hedge VA contract appropriately. In fact, in most VA contracts sold in the industry,
early surrenders trigger a surrender charge and the policyholder does not receive the full
value accumulated in the underlying fund. This is especially true in the first years of
the contract. This surrender charge has many purposes, one of which is to reduce the
incentive to surrender. It is also in place to recover the high expenses related to the sale
of the VA contract. While this fee does give the policyholder an incentive to remain
in the contract, there are many situations where it is optimal to surrender, even after
taking the surrender charge into account.

In this paper we investigate the optimal surrender strategy for a variable annuity
contract with constant fee rate paid as a percentage of the fund and a GMAB feature.
We first consider a simple point-to-point guarantee and derive an integral representation
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for the price of the contract, which can be solved to compute the optimal surrender
boundary. To do so, we use no-arbitrage arguments presented, among others, by Kim
and Yu (1996) and Carr, Jarrow, and Myneni (1992). This technique originally designed
for vanilla call options can be extended to more complex path-dependent payoffs linked
for example to the average. Our objective is to illustrate a general technique to compute
the optimal surrender strategy for a possibly path-dependent contract. This technique
may help to understand the effect of complex path-dependent benefits on surrender
incentives and could be useful to reduce the surrender option value by modifying the
type of benefits offered and justifying the need for path-dependent benefits. This is in
contrast with the recent proposal by Bernard, Hardy, and MacKay (2013) to influence
the surrender behaviour by charging a state-dependent fee structure, instead of charging
a constant fee rate1.

The paper is organized as follows. In Section 2 we state the setting. The optimal
surrender policy is derived in Section 3. Section 4 extends this method to path-dependent
payoffs. In Section 5 we apply these results to numerical examples and analyze the
sensitivity of the boundary with respect to a range of parameters. Section 6 concludes.

2 Setting

Consider a variable annuity contract with a guaranteed minimum accumulation benefit
GT at maturity T . This accumulation benefit is computed as GT = GegT where the
guaranteed rate g satisfies g < r. Let Ft denote the underlying accumulated fund value
of the variable annuity at time t. We assume that the insurance company charges a
constant fee c for the guarantee, which is continuously withdrawn from the accumulated
fund value Ft. Furthermore, we assume that the policyholder pays a single premium to
initiate the contract. The insurer then invests this premium in the fund or index that
was chosen by the policyholder. We denote this underlying fund or index by St and
assume that it follows a geometric Brownian motion. Therefore, its dynamics under the
risk-neutral measure Q are given by

dSt = rStdt+ σStdWt, (1)

where r is the risk-free interest rate, σ > 0 the constant volatility and Wt the Brownian
motion. We denote by Ft the natural filtration associated with this Brownian motion.

1In the model of Bernard, Hardy, and MacKay (2013) the policyholder only pays the fee as long as
the fund value stays underneath a certain barrier.
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In this case, the stock price at time u > t given the stock price at time t has a lognormal
distribution and is explicitly given by

Su = Ste
(r−σ

2

2
)(u−t)+σ(Wu−Wt)

In this paper, we are only concerned with the pricing of the surrender option and as
such, we can treat the whole problem under the risk-neutral measure. This choice is
also motivated by the use of no-arbitrage arguments in the derivation of the expression
for the surrender option. It is based on the assumption that investors optimize over
all possible surrender strategies and will choose to surrender optimally from a financial
perspective. As investors do not always act optimally, our derivations lead to an upper
bound on the price of the surrender option.

The following results (2) and (3) will be useful to derive the results of this paper. Since
the insurance company continuously takes out a percentage fee c of the fund value, we
have the following relationship between Su and Fu at any time u

Fu = e−cuSu = Fte
(r−c−σ

2

2
)(u−t)+σ(Wu−Wt). (2)

Therefore, the conditional distribution of Fu|Ft for u > t is a lognormal distribution
with mean ln(Ft) + (r − c − σ2

2
)(u − t) and variance σ2(u − t). Hence, the risk-neutral

transition density function of Fu at time u > t given Ft equates to

fFu(x|Ft) =
1√

2πσ2(u− t)x
e
−

[ln( x
Ft

)−(r−c−σ2

2 )(u−t)]2

2σ2(u−t) , x > 0. (3)

Note that in this paper we restrain ourselves to the case when the underlying follows a
geometric Brownian motion, which presents a simple closed expression for its transition
density. However, the method we present here can easily be extended to more general
market models. We discuss this point briefly in the conclusion.

2.1 Fair Fee for the European Benefit

Let us assume in this paragraph that the VA cannot be surrendered early and let c be
the fee charged by the insurer between 0 and T . Note that the fund value at time T
depends on this fee. We denote by F c

T the value at T of the fund given that the fee
charged during [0, T ] is equal to c and by φ(F c

• , T ) the payoff at maturity T which may
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depend on the path of the fund denoted by F c
• . If the fee c is fair (for the European

benefit), we denote it by c∗ and it fulfills

F0 = E[e−rTmax(φ(F c∗

• , T ), GT )], (4)

where F0 is the lump sum paid initially by the policyholder net of initial expenses and
management fees. This fee c∗ exists and is unique. To compute this fair fee, it is always
possible to use Monte Carlo techniques. However when the distribution of φ(F c

• , T ) is
known, an analytical formula may be derived, which subsequently can be solved for
c∗. For example when {Xt}t∈[0,T ] is a Markov process with XT |Xt ∼ LN (Mt, Vt) (a
lognormal distribution with parameters E[XT |Xt] = Mt and var(XT|Xt) = Vt), then
E[max(XT , G)] can be computed as

E[max(XT , G)|Ft] = eMt+
Vt
2 Φ
(− ln(G) +Mt + Vt√

Vt

)
+GΦ

( ln(G)−Mt√
Vt

)
(5)

We omit the proof as it is a rather standard computation. The expression (5) can
be used to compute the European value of the VA in a Black Scholes setting when
φ(F c∗

• , T ) = F c∗
T , which is the simplest benefit: a GMAB on the terminal fund value

payable at time T (Section 3). We can then solve for the fair fee in (4). It will also be
applied when φ(F c∗

• , T ) is the geometric average of the fund value in Section 4.

2.2 Surrender Option

We now assume that the policyholder is allowed to surrender the policy at any time
t ∈ [0, T ) for a surrender benefit equal to

(1− κt)F c
•

where κt is a penalty percentage charged for surrendering at time t. This is consistent
with the modeling of surrender charges in Milevsky and Salisbury (2001). A standard
penalty is typically decreasing over time. Examples of penalty functions are given in
Palmer (2006).

In the absence of a surrender penalty (∀t, κt = 0), we will see in the numerical analysis
in Section 5 that the optimal surrender boundary is decreasing as a function of c. This
result is intuitive: if the fee c charged on the fund is high, the policyholder has a larger
incentive to surrender the contract when the guarantee is out of the money, because
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he is paying more for it.2 This observation means that it may be difficult to pay for
the surrender benefit by withdrawing a higher fixed percentage of the fund. Indeed if,
for example, it is optimal to surrender when Ft > 125 when c = 1%, then by charging
c = 2% it might be optimal to surrender when Ft > 100. Increasing the fee c to take into
account the surrender benefit increases the value of the surrender option. Alternatives
include the possibility to charge for this benefit initially as a lump payment or to design
a sufficiently high surrender penalty to decrease the incentive to surrender. This point
is already present in the analysis of Milevsky and Salisbury (2001). It is clear that when
κt is sufficiently high then it is never optimal to surrender at time t.

For simplicity, throughout the paper, we assume that κt is exponentially decreasing
and equal to 1− exp(−κ(T − t)) so that the surrender benefit is equal to

e−κ(T−t)F c
• , (6)

for κ < c. For example when the surrender benefit at time t is e−κ(T−t)F c
t , then the

inequality κ < c ensures that it can be optimal to surrender the VA for a sufficiently
high value of the fund F c

t . The continuation value of the contract at time t is indeed
always strictly greater than F c

t e
−c(T−t) because the policyholder will receive max(F c

T , GT )
at time T and thus at least the fund F c

T . At time t, the value of receiving F c
T at time

T is given by E[F c
T e
−r(T−t)|Ft] = e−c(T−t)F c

t . By assuming that κ < c, we ensure that
for any fixed time t ∈ [0, T ), there exists a fund value high enough that the surrender
benefit is worth more than the maturity benefit so that surrendering the policy might
become optimal.

3 Derivation of the optimal exercise boundary

This section presents the technique used to derive the optimal surrender boundary. As
already mentioned earlier it can sometimes be optimal for the policyholder to surrender
the contract before the maturity T because the fee c is charged as a percentage of the fund
value. Thus, assuming the fund value is sufficiently high, the fee paid for the guarantee
would be too high compared to the actual value of the guarantee. This mismatch leads
to an optimal early surrender of the variable annuity.

2In other words at a given time, the higher c the larger is the future fees to pay before the maturity
whereas the final benefit is decreasing in c, so the gap between the future benefit associated with the
guarantee option and the future expected fees remaining to be paid increases and thus the incentive to
surrender increases as well.
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Consider the variable annuity contract from Section 2 with a payoff of max(FT , GT ) at
maturity T , where we assume that c is given and thus omit the exponent c in the value
of the fund at time t. If the contract is surrendered early at time t < T , the policyholder
receives the accumulated fund value Ft reduced by the penalty fees so that the surrender
benefit is given by e−κ(T−t)Ft (particular case of (6)). Let Bt denote the value of the
optimal exercise boundary at time t, i.e. if the fund value crosses this value from below,
it is optimal for the policyholder to lapse the contract and receive the amount Bt.

3

In order to derive the price and the boundary conditions we use the same technique
as Kim and Yu (1996) and Carr, Jarrow, and Myneni (1992) and we decompose the
price at time t of the VA denoted by V (Ft, t) into a European part and an early exercise
premium. To understand the intuition behind this approach, consider the following
trading strategy which “converts” the American part of the option, i.e. the surrender
option, into the corresponding European option and the early exercise premium. We
know that the price of the VA at time t < T along the exercise boundary is equal to
e−κ(T−t)Ft because the surrender benefit at t is e−κ(T−t)Ft. Moreover, B0 > F0 because
otherwise it would not be optimal for the policyholder to buy the VA at time 0 for a
price F0. We neglect all transaction costs.

Assume that the policyholder has bought the VA at time t = 0. Now whenever the
fund value crosses the optimal exercise boundary from below, he exercises the option
and surrenders the contract. And whenever the fund value crosses the boundary from
above, he buys back the VA contract (given that the boundary is exactly equal to the
value of the VA by definition). Any profits resulting from this trading strategy constitute
the early exercise premium from the additional surrender benefit in the VA. So assume
that at time t the fund value Ft crosses the optimal exercise boundary from below.
The policyholder surrenders the contract and receives e−κ(T−t)Ft = e−κ(T−t)e−ctSt which
he instantaneously invests in the stock St. However, since St is not subject to the
guarantee fee c, St outperforms Ft. Therefore, in the case that the fund value crosses
the exercise boundary from above, say at time u > t, the value of the contract on the
boundary is e−κ(T−u)Fu, the policyholder only needs to pay e−κ(T−u)Fu to re-enter, that
is e−κ(T−u)e−cuSu = e−κT e−(c−κ)uSu < e−κ(T−t)e−ctSu (because c − κ > 0). The profit
from this strategy is the early exercise premium. A formal derivation is given in the
proof of Proposition 3.1 below.

Proposition 3.1. The benefit associated with the early exercise of the surrender option

3It is proved in Appendix A that the optimal exercise region is of the form {Ft > Bt}, in other words
the optimal surrender behavior is based on a threshold strategy where optimal exercise is driven by the
value of the underlying fund crossing a barrier.
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between [t, t+ dt] for an infinitesimal time step dt equates to h(t) = e−κ(T−t)(c− κ)Ft.

Proof. Assume the variable annuity is surrendered at time t. Then the policyholder re-
ceives an amount of e−κ(T−t)Ft = e−κ(T−t)e−ctSt, which is invested in the asset St. In order
to buy it back at time t+dt > t, he only needs e−κ(T−(t+dt))Ft+dt = e−κT e−(c−κ)(t+dt)St+dt.
Therefore, consider the following decomposition of the amount received at time t:

e−κ(T−t)e−ctSt = e−κT e−(c−κ)(t+dt)St + e−κTSt(e
−(c−κ)t − e−(c−κ)(t+dt))

= e−κ(T−(t+dt))e−c(t+dt)St + e−κ(T−t)e−ctSt(1− e−(c−κ)dt) (7)

The first addend is the amount invested in the asset St that is needed to re-enter the con-
tract at time t+dt (in other words, it is the no-arbitrage price of e−κ(T−(t+dt))e−c(t+dt)St+dt
paid at time t + dt). The second addend is the amount that needs to be siphoned off
and is invested in the risk-free asset. This decomposition is going to be the key step
in generalizing this proof to more general benefits (see Section 4 for an example of
path-dependent benefit).

Now we can look at what happens to this portfolio after we perform the time step
from t to t+ dt. We use the first order approximation to approximate e−(c−κ)dt and erdt.
Then the right hand side of (7) becomes

e−κT e−(c−κ)(t+dt)St+dt + e−κT e−(c−κ)tSte
rdt(1− e−(c−κ)dt)

= e−κT e−(c−κ)(t+dt)St+dt + e−κT e−(c−κ)tSt(1 + rdt)(c− κ)dt+ o(dt)
= e−κT e−(c−κ)(t+dt)St+dt + e−κT e−(c−κ)tSt(c− κ)dt+ o(dt)
= e−κ(T−(t+dt))Ft+dt + e−κ(T−t)(c− κ)Ftdt+ o(dt)

The first part of the expression is the cost of buying back the variable annuity. Then
the policyholder is left with the benefit of early exercise of h(t) := e−κ(T−t)(c− κ)Ft. �

Using Proposition 3.1 and the trading strategy explained above we are now able to de-
rive a pricing formula for the variable annuity contract with a surrender benefit similarly
to Carr, Jarrow, and Myneni (1992).

Theorem 1. Let V (Ft, t) denote the price at time t of the variable annuity with guar-
antee GT at maturity and a surrender benefit equal to the accumulated fund value with
some penalty κ > 0, e−κ(T−t)Ft. Then V (Ft, t) can be decomposed into a corresponding
European part v(Ft, t) and an early exercise premium e(Ft, t)

V (Ft, t) = v(Ft, t) + e(Ft, t), (8)
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where {
v(Ft, t) = e−c(T−t)FtΦ

(
d1(Ft, GT , T, t)

)
+ e−r(T−t)GTΦ

(
d2(Ft, GT , T, t)

)
,

e(Ft, t) = e−κT (c− κ)Fte
ct
∫ T
t
e−(c−κ)uΦ

(
d1(Ft, Bu, u, t)

)
du,

(9)

and Φ(x) is the standard normal distribution function with d1 and d2 defined as
d1(x, y, T, t) :=

ln(x
y
)+(r−c+σ2

2
)(T−t)

σ
√
T−t ,

d2(x, y, T, t) := σ
√
T − t− d1(x, y, T, t).

(10)

Proof. At first we prove the formula for the European part v(Ft, t) of the VA. Since
FT |Ft ∼ LN (ln(Ft) + (r − c − σ2

2
)(T − t), σ2(T − t)), we can use (5) to calculate the

European part of the VA. Define d1 and d2 as in (10). Then it follows that

v(Ft, t) = e−r(T−t)

[
Fte

(r−c)(T−t)Φ
(− ln(GT ) + ln(Ft) + (r − c+ σ2

2
)(T − t)

σ
√
T − t

)
+GTΦ

( ln(GT )− ln(Ft)− (r − c− σ2

2
)(T − t)

σ
√
T − t

)]
,

and we find (9). Secondly, we prove the formula for the early exercise premium e(Ft, t).
Define µ̃(x) := ln(Ft) + (r − c − σ2

2
)(x − t) and σ̃2(x) := σ2(x − t). From Proposition

3.1, the benefits of an early exercise amounts to e−κ(T−u)(c− κ)Fudu whenever the fund
Fu is above the optimal exercise boundary Bu at any time u > t. Therefore, the early
exercise premium at t < T can be calculated by the following formula

e(Ft, t) =

∫ T

t

e−r(u−t)
∫ ∞
Bu

e−κ(T−u)(c− κ)xfFu(x|Ft)dxdu

(3)
= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞
Bu

x
1√

2πσ2(u− t)x
e
−

[ln( x
Ft

)−(r−c−σ2

2 )(u−t)]2

2σ2(u−t) dxdu

= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞
Bu

1√
2πσ̃2(u)

e
− [ln(x)−µ̃(u)]2

2σ̃2(u) dxdu

y=ln(x)
= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞
ln(Bu)

1√
2πσ̃2(u)

e
− [y−µ̃(u)]2

2σ̃2(u) eydydu

= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞
ln(Bu)

1√
2πσ̃2(u)

e
− [y−(µ̃(u)+σ̃2(u)]2

2σ̃2(u) eµ̃(u)+
σ̃2(u)

2︸ ︷︷ ︸
=Fte(r−c)(u−t)

dydu
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= (c− κ)Ft

∫ T

t

e−κ(T−u)e−c(u−t)
[
1− Φ

(
ln(Bu)− (µ̃(u) + σ̃2(u))

σ̃(u)

)]
du

= (c− κ)Ft

∫ T

t

e−κ(T−u)e−c(u−t)Φ

(
ln( Ft

Bu
) + (r − c+ σ2

2
)(u− t)

σ
√
u− t

)
du

= (c− κ)Ft

∫ T

t

e−κ(T−u)e−c(u−t)Φ
(
d1(Ft, Bu, u, t)

)
du.

The expression for the early exercise premium in (9) follows. �

Theorem 1 provides a way to calculate the price of a VA with surrender benefit.
However, since the early exercise premium depends on the optimal exercise boundary Bt,
one needs to compute it first. In the following we derive the optimal exercise boundary
condition in analogy to Kim and Yu (1996).

First, note that the value of BT at maturity equals to BT = GT . We also know that
along the exercise boundary it holds

V (Ft, t) = e−κ(T−t)Ft = Bt.

Thus, by formula (8) and (9) we have

Bt = v(Ft, t) + e(Ft, t)

= e−c(T−t)Bte
κ(T−t)Φ(d1(Bte

κ(T−t), GT , T, t)) + e−r(T−t)GTΦ(d2(Bte
κ(T−t), GT , T, t))

+ (c− κ)Bte
(c−κ)t

∫ T

t
e−(c−κ)uΦ

(
d1

(
Bte

κ(T−t), Bu, u, t
))

du. (11)

This integral equation can be used to compute the optimal exercise boundary Bt. Observe,
however, that in order to equate Bt the optimal exercise boundary for future times must
be known. Since it holds that BT = GT at expiration, we work backwards through time
to recursively recover the optimal exercise boundary. Because formula (11) does not have
an analytic solution, numerical integration schemes must be used. Practically this is done
by dividing the interval [0, T ] into n equidistant subintervals 0 = t0 < t1 < ... < tn = T
where times ti, i = 0, .., n, represent the only possible early exercise times. Define g(u) :=
e−(c−κ)uΦ(d1(Bte

κ(T−t), Bu, u, t)). Then, the integral in (11) is approximated by

I(k) =
T

n

k−1∑
i=1

g(tn−i), k = 1, .., n. (12)

Note, that at time tn−1 the early exercise premium I(1) is equal to zero because there is no
possibility for the policyholder to surrender the option in the last interval. Therefore, the
premium has to be zero.
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Proposition 3.2 (Derivation of the optimal exercise boundary). The following backward pro-
cedure allows to derive the exercise boundary approximately.

• Btn = BT = GT .

• Recursively, for k = 1..n, compute I(k) in (12) to approximate the right part of (11)
and solve the following equation for the only unknown Btn−k

Btn−k = e−c(T−tn−k)Btn−ke
κ(T−tn−k)Φ(d1(Btn−ke

κ(T−tn−k), GT , T, tn−k))

+ e−r(T−tn−k)GTΦ(d2(Btn−ke
κ(T−tn−k), GT , T, tn−k)) + (c− κ)Btn−ke

(c−κ)tn−kI(k).

The method described in this Section 3 is straightforward to extend to any path-independent
payoff for which φ(F c• (T ), T ) = `(F cT , T ) for some function `(·). In the next section we illustrate
how to derive the optimal exercise boundary when φ(F c• (T ), T ) is possibly path-dependent, that
is it depends on the path (Ft)t∈[0,T ].

4 Path-dependent payoff

In this section, we consider a path-dependent design of the payoff of the variable annuity. The
example that we study is based on the following payoff φ(F c• ) = max(GT , YT ) computed as the
maximum of the geometric average YT of the fund value at time T and of the guarantee GT
at time T . The geometric average Y is defined as

Yt = exp

1

t

t∫
0

lnFsds

 . (13)

Our goal is twofold. First we illustrate a general method to derive the optimal surrender
strategy when there are path-dependent benefits. Second, we want to understand the impact
of Asian benefits on the surrender incentive in VAs.

We need a few preliminary results. Defining the geometric average of the index similarly as

Ỹt = exp

1

t

t∫
0

lnSsds

 (14)

gives us the following relation between Yt and Ỹt at any time t

Yt = e−
ct
2 Ỹt. (15)
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An important difference with the setting of Section 3 is that this payoff is path-dependent since
Yt includes all values of Fs for times s ∈ [0, t]. We assume that the surrender benefit at time t
is now also path-dependent and equal to

e−κ(T−t)Yt, (16)

where κ is sufficiently small so that it can still be optimal to surrender the policy. In particular,
throughout the section, we have the following assumption.

Assumption 4.1. The parameters r, c and κ are such that

• κ < r+c+σ2

6
2 , and

• c < r − σ2

6 .

Note that this assumption is not very restrictive. In fact, with a fee rate that would fail to
meet the second point of Assumption 4.1, the policy would hardly be marketable.

In the same setting as described in Section 2, the conditional distribution of Yu to Ft for
u > t can be computed as well. Precisely, the conditional distribution of Ỹu|(Ỹt, St) follows a
lognormal distribution

Ỹu|(Ỹt, St) ∼ LN

(
t

u
lnỸt +

u− t
u

lnSt +
r − σ2

2

2u
(u− t)2 , σ2

3u2
(u− t)3

)
.

This result is known and can be found for example in Hansen and Jørgensen (2000). Using
the relationships (15) and (2), it is easy to show from the previous result on St and Ỹt that

Yu|(Yt, Ft) ∼ LN

(
t

u
lnYt +

u− t
u

lnFt +
r − c− σ2

2

2u
(u− t)2 , σ2

3u2
(u− t)3

)
(17)

Therefore, the conditional distribution function of Yu given (Yt, Ft) is known, similarly to the
conditional distribution of Fu|Ft in (3) which was key in the derivation of the early exercise
premium for path-dependent benefits.

Using a similar trading strategy as in Section 3, we compute the early exercise premium of
the variable annuity with Asian benefits and are able to prove the following proposition.

Proposition 4.1. The benefit associated with the early exercise of the surrender option between
[t, t+ dt] for an infinitesimal time step dt equates to

h(t, Yt, Ft) = e−κ(T−t)Yt

(
r − κ+

1

t
ln

(
Yt
Ft

))
,

when at time t, it is optimal to surrender with (Yt, Ft).

13



Proof. The proof is in the same spirit as the proof of Proposition 3.1 for path-independent
benefits. At the optimal boundary, the value of the VA is exactly equal to the surrender benefit
(16), therefore

V (Yt, Ft, t) = e−κ(T−t)Yt

At time t+ dt, the value of the contract at the exercise boundary is

V (Yt+dt, Ft+dt, t+ dt) = e−κ(T−t−dt)Yt+dt

Assume that the VA is surrendered at time t, then the policyholder receives e−κ(T−t)Yt, we
now have to compute how much is gained by staying out of the contract between t and t+ dt.
The main difficulty is to find a trading strategy at time t to ensure that we are able to re-enter
the contract at t+ dt and to measure the profit from this strategy needed in the calculation of
the early exercise premium.

Let us compute at time t the no-arbitrage value of e−κ(T−t−dt)Yt+dt. To do so, consider u > t
and compute first

E[e−r(u−t)Yu|Ft] = e−r(u−t) exp

(
t

u
lnYt +

u− t
u

lnFt +
r − c− σ2

2

2u
(u− t)2 +

σ2(u− t)3

6u2

)
using the conditional distribution of Yu|(Yt, Ft). For u = t+ dt, we find that

E[e−rdtYt+dt|Ft] = e−rdt exp

(
t

t+ dt
lnYt +

dt

t+ dt
lnFt +

r − c− σ2

2

2(t+ dt)
dt2 +

σ2dt3

6(t+ dt)2

)
.

After removing terms negligible against dt

E[e−rdte−κ(T−t−dt)Yt+dt|Ft] = e−κ(T−t−dt)e−rdt exp

((
1− dt

t

)
lnYt +

dt

t
lnFt + o(dt)

)
,

which can be further simplified into

E[e−rdte−κ(T−t−dt)Yt+dt|Ft] = e−κ(T−t)Yt − e−κ(T−t)Yt
(
r − κ+

1

t
ln

(
Yt
Ft

))
dt+ o(dt).

At time t, the policyholder receives e−κ(T−t)Yt. Note the following decomposition,

e−κ(T−t)Yt = e−κ(T−t−dt)E[e−rdtYt+dt|Ft] + e−κ(T−t)Yt

(
r − κ+

1

t
ln

(
Yt
Ft

))
dt+ o(dt)

One can invest Yte
−κ(T−t) − Yte−κ(T−t)

(
r − κ+ 1

t ln
(
Yt
Ft

))
dt at time t in the delta hedging

strategy that generates e−κ(T−t)Yt+dt at time t+dt. The remainder is left in a bank account at
time t, so that the early exercise premium between t and t+ dt can be computed as h(t, Yt, Ft)
in Proposition 4.1. �
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Note that it seems that the early exercise premium can be negative. This is actually not the
case as if it is optimal to surrender at time t, then it means that one cannot get better when
waiting for another dt, therefore

Yte
−κ(T−t) > E[e−rdtYt+dte

−κ(T−t−dt)|Ft],

and thus h(t, Yy, Ft) > 0 at any time t when it is optimal to surrender with (Yt, Ft).

Proposition 4.2. Let Ft denote the fund value process given in (2) and Yt the geometric
average based on Ft given in (13). Then, for u > t,

Yu|(Yt, Ft, Fu = f) ∼ LN
(
Mf , V̂u,t

)
, (18)

where

{
Mf := MYu|Yt,Ft,Fu=f = t

u lnYt + 1
2
u−t
u lnFt + u−t

2u ln f,

V̂u,t := VYu|Yt,Ft,Fu=f = σ2

12u2
(u− t)3.

Proof. Conditionally on (Yt, Ft), we have that (ln(Yu), ln(Fu)) is a bivariate normal distri-
bution. Thus ln(Yu)|(ln(Fu), Ft, Yt) is normally distributed with mean MYu|Yt,Ft,Fu and vari-
ance VYu|Yt,Ft,Fu . To compute the conditional moments of X|Y where X = lnYu|Ft, Yt and
Y = lnFu|Ft, Yt for u > t we first compute

E[X] = E[lnYu|Ft, Yt] = t
u lnYt + u−t

u lnFt +
r−c−σ

2

2
2u (u− t)2

E[Y ] = E[lnFu|Ft, Yt] = E[lnFu|Ft] = ln(Ft) + (r − c− σ2

2 )(u− t)
Var[X] = Var[lnYu|Ft, Yt] = σ2

3u2
(u− t)3

Var[Y ] = Var[lnFu|Ft, Yt] = Var[lnFu|Ft, Yt] = σ2(u− t)
cov[X,Y ] = cov[lnFu, lnYu|Ft, Yt] = σ2

2
(u−t)2
u

corr[X,Y ] =
√
3
2

(19)

using (3) and (17) for the conditional means and variances. The only missing element is the

covariance. From (13), recall that Yu = Y
t
u
t e

1
u

∫ u
t ln(Fs)ds. It is thus clear that

cov[X,Y ] = cov

[
lnFu,

t

u
lnYt +

1

u

∫ u

t
lnFsds|Ft, Yt

]
= cov

[
lnFu,

1

u

∫ u

t
lnFsds|Ft, Yt

]
Using the linearity of the covariance

cov[X,Y ] =
1

u

∫ u

t
cov [lnFu, lnFs|Ft, Yt] ds

where we are left with the computation of cov [lnFu, lnFs|Ft, Yt] for t 6 s 6 u. It is clear that
cov [lnFu, lnFs|Ft, Yt] = σ2cov [(Wu −Wt), (Ws −Wt)|Ft, Yt] = σ2cov [Wu−t,Ws−t|F0, Y0] =
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σ2 min(u− t, s− t). Integrating over s gives the desired result. Then using the inputs in (19)
and the well-known conditional moments of a bivariate normal distribution

MYu|Yt,Ft,Fu = E(X) +
cov(X,Y )

var(Y )
(Y − E(Y ))

VYu|Yt,Ft,Fu = (1− ρ2) var(X),

where ρ = cov(X,Y )√
var(X) var(Y )

. The claim follows and we have that Yu|Yt, Ft, Fu = f is distributed

according to a LogNormal distribution with these moments. �

We can now state a similar result for the early exercise premium with Asian benefits as we
derived in Section 3.

Theorem 2. Let V g(Yt, Ft, t) denote the price at time t of the variable annuity with guarantee
GT at maturity and a surrender benefit equal to the accumulated geometric average e−κ(T−t)Yt,
and suppose that Assumption 4.1 holds. Then V g(Yt, Ft, t) can be decomposed into a corre-
sponding European part vg(Yt, Ft, t) and an early exercise premium eg(Yt, Ft, t)

V g(Yt, Ft, t) = vg(Yt, Ft, t) + eg(Yt, Ft, t), (20)

where

vg(Yt, Ft, t) = e−r(T−t)eM
g
t +

V
g
t
2 Φ
(− ln(GT ) +Mg

t + V g
t√

V g
t

)
+ e−r(T−t)GTΦ

( ln(GT )−Mg
t√

V g
t

)
,

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)e
V̂u,t
2 Y

t
u
t F

u−t
2u
t E [k(u, Fu, t)] du

where Mg
t and V g

t are the conditional moments of ln(YT )|(Yt, Ft) given in (17), Fu is LogNormal
with density fFu(f |Ft) in (3) and where

k(u, f, t) = f
u−t
2u

Φ

Hu(Bu(f), f)√
V̂u,t

(Hu(f, f)

u
+ r − κ

)
+

√
V̂u,t

u
√

2π
e
− 1

2
Hu(Bu(f),f)

2

V̂u,t


with Hu(x, f) = Mf+V̂u,t−ln(x) and Mf and V̂u,t are the conditional moments of Yu|(Yt, Ft, Fu =
f) for u > t given in Proposition 4.2.

Proof. At first we prove the formula for the European part vg(Yt, Ft, t) of the VA. Since
YT |(Yt, Ft) ∼ LN (Mg

t , V
g
t ), we can use (5) to calculate the European part of the VA. vg(Yt, Ft, t)

in (20) follows immediately. Secondly, we prove the formula for the early exercise premium
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eg(Yt, Ft, t). Performing a similar substitution as in the derivation of the early exercise premium
in Section 3 we get

eg(Yt, Ft, t) =

T∫
t

e−r(u−t)
∞∫
0

∞∫
Bu(f)

h(u, y, f)fYu(y|Yt, Ft, Fu = f)dyfFu(f |Ft, Yt)dfdu (21)

with h(u, y, f) given in Proposition 4.1 and where the rationale is to derive the optimal bound-
ary Bu(f) for Yu at time u given Fu = f . Indeed the optimal surrender policy at time u now
depends on Yu and Fu. We first work conditionally on Fu and assume that Fu = f is given.
We then look for the critical level for Yu to trigger the optimal surrender of the policy. The
surrender region is of the form Yu > Bu(f).4

To compute eg(Yt, Ft, t) note that fFu(f |Yt, Ft) = fFu(f |Ft) is known in (3), and that the
distribution of fYu(y|Yt, Ft, Fu = f) is given in Proposition 4.2. Let us thus simplify the early
exercise premium (21) as

T∫
t

e−r(u−t)e−κ(T−u)
∞∫
0

∞∫
Bu(f)

y

(
r − κ+

1

u
ln

(
y

f

))
fYu(y|Yt, Ft, Fu = f)dyfFu(f |Ft)dfdu

and thus

eg(Yt, Ft, t) = e−κT ert
∫ T

t
eu(κ−r)

∫ ∞
0

[(
r − κ− ln(f)

u

)
E1 +

1

u
E2

]
fFu(f |Ft)dfdu

where E1 := E
[
1Y >Bu(f)Y

]
and E2 := E

[
1Y >Bu(f)Y ln (Y )

]
, and where Y is lognormal with

log moments Mf and V̂u,t (mean and variance of ln(Yu)|Yt, Ft, Fu = f calculated in Proposition
4.2). It is then easy to prove that

E1 = Φ

(
Mf+V̂u,t−ln(Bu(f))√

V̂u,t

)
eMf+

V̂u,t
2

E2 =
√
V̂u,tBu(f)

1+
Mf

V̂u,t e
− 1

2

M2
f+(ln(Bu(f)))

2

V̂u,t√
2π

+ (Mf + V̂u,t)E1

This observation allows us to further simplify the early exercise premium to

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)
∞∫
0


√
V̂u,t

u
√

2π
Bu(f)

1+
Mf

V̂u,t e
− 1

2

M2
f+(ln(Bu(f)))

2

V̂u,t

+Φ

Mf + V̂u,t − ln(Bu(f))√
V̂u,t

 eMf+
V̂u,t
2

(
Mf + V̂u,t − ln(f)

u
+ (r − κ)

) fFu(f |Ft)dfdu

4See Appendix B.
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Replacing Bu(f) by exp(ln(Bu(f))), noting that V̂u,t does not depend on f , and denoting by

Hu(x, f) := Mf + V̂u,t − ln(x), this expression further simplifies to

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)e
V̂u,t
2

∞∫
0


√
V̂u,t

u
√

2π
e
− 1

2
Hu(Bu(f),f)

2

V̂u,t

+Φ

Hu(Bu(f), f)√
V̂u,t

(Hu(f, f)

u
+ r − κ

) eMf fFu(f |Ft)dfdu

then

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)e
V̂u,t
2 Y

t
u
t F

u−t
2u
t E [k(u, Fu, t)] du

where k(u, f, t) = f
u−t
2u

(
Φ

(
Hu(Bu(f),f)√

V̂u,t

)(
Hu(f,f)

u + r − κ
)

+

√
V̂u,t

u
√
2π

e
− 1

2
Hu(Bu(f),f)

2

V̂u,t

)
and Fu

is a LogNormal variable with density fFu(f |Ft). �

Theorem 2 provides a formula for the price of a VA with Asian benefits including a surrender
option. However, since the early exercise premium depends on the optimal exercise boundary
Bt(f) it is not an explicit formula that can be implemented directly. One first needs to compute
this boundary in analogy to Kim and Yu (1996). Note that the value of BT (FT ) at maturity
is known and equal to BT (FT ) = GT . The procedure is then similar to the one-dimensional
case except that one has a double integral to integrate.

To make the problem more tractable and reduce the number of equations to solve, we make
the following assumption on the shape of the barrier. The benefit of this assumption appears
clearly in Proposition 4.3 below, which describes the algorithm to derive the optimal surrender
boundary.

Assumption 4.2. Assume that the boundary Bu(f) is given by the following form

Bu(Fu) = max(GT e
−r(T−u), au + buFu) (22)

At any time before maturity, it is never optimal to surrender unless the immediate payoff
is at least equal to the discounted value of the minimum terminal payoff GT as this is the
minimum amount guaranteed at time T . We also know that along the exercise boundary it
holds

V (Ft, t) = e−κ(T−t)Yt = Bt(Ft) = max(GT e
−r(T−t), at + btf).
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Thus, by formula (20)

Bt(Ft) = vg(max(GT e
−r(T−t), at + btFt), Ft, t) + eg(max(GT e

−r(T−t), at + btFt), Ft, t).

This is an integral equation for the optimal exercise boundary because of the form of eg(·, ·, ·)
in (21). Observe, however, that in order to compute max(GT e

−r(T−t), at + btFt) at time t,
the optimal exercise boundary for future times must be known. Since it holds that BT =
GT (bT = 0) at expiration, we can work backwards through time to recursively recover the
optimal exercise boundary. Because formula (21) does not have an analytic solution, numerical
integration schemes must be used. Practically this is done by dividing the interval [0, T ] into n
equidistant subintervals 0 = t0 < t1 < ... < tn = T , where the times ti, i = 0, .., n, represent the

possible early exercise times. Define g(u) := e−κT erteu(κ−r)e
V̂u,t
2 Y

t
u
t F

u−t
2u
t E [k(u, Fu, t)]. Then,

the integral in (21) is approximated by

I(k) =
T

n

k−1∑
i=1

g(tn−i), k = 1, .., n. (23)

Note, that at time tn−1, I(1) = 0.

Proposition 4.3 (Derivation of the optimal exercise boundary). The following backward pro-
cedure allows to derive the exercise boundary approximately.

• Btn = BT = GT , bT = 0.

• Recursively, for k = 1..n:

– For m values of Ft, compute the optimal boundary Bt(Ft) using (23) and solving

Bt(Ft) = vg(max(GT e
−r(T−t), at + btFt), Ftn−k , tn−k) + I(k).

– Out of the m values obtained, use those above GT e
−r(T−t) to perform a linear

regression and obtain at and bt.

A numerical illustration is given in the next section. Note that the technique described in
this section will apply for other types of path-dependent benefits. The derivation holds when
at any time u, conditional on the value of the underlying fund Fu = f at time u, the optimal
strategy is driven by checking whether some other quantity (here the geometric average) is
above a level Bu(f) (in other words the optimal strategy is a threshold strategy conditionally
on the fund value at time u). Finally. note that the approximation (22) significantly simplifies
the implementation as it locally approximates the surrender boundary with a piecewise linear
function. From our numerical experiments we found that this is a satisfactory approximation.
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5 Numerical Results

This section presents some numerical examples to illustrate the techniques presented in Sections
3 and 4 respectively.

5.1 Optimal Boundary for the VA studied in Section 3

We perform a sensitivity analysis to further shed light on some properties of the exercise
boundary derived in Section 3. Unless stated otherwise, we assume that κ = 0, r = 0.03,
σ = 0.2 and T = 15 (years). The guaranteed amount GT is equal to 100, and g = 0 so that
Gt = GT at any time t. We find that the fair fee c∗ = 0.91% neglecting the surrender benefit.

Figure 1 shows optimal exercise boundaries for the set of parameters given above when
varying one parameter at a time. There are a few things to be noticed. First, as discussed
earlier, the time zero value of the boundary is greater than the fund value at time 0 and
the value at maturity T is equal to the guarantee GT . Secondly, the graph of the exercise
boundary is generally non-monotonic. The curve slowly increases to its maximum and then
declines rapidly to GT .

In the following we examine the sensitivity of the optimal exercise boundary with respect to
the parameters σ, r, c, T , GT and κ. Panel A of Figure 1 illustrates the sensitivity with respect
to the volatility σ. We compute the exercise boundary for values of σ = 15%, 20%, 25% and
30%. We observe that as volatility increases the optimal exercise boundary gets pushed further
up. With a high volatility, the policyholder would surrender the contract at higher values of
the underlying fund than if he had invested in a fund with a lower volatility. Intuitively this
result can be explained by the fact that the fund fluctuates more heavily if the volatility is
higher. Therefore, the maturity benefit is more valuable.

Panel B of Figure 1 displays the sensitivity with respect to the risk-free interest rate r.
We vary the interest rate between 2% and 3.5% and compute the optimal exercise boundary.
Similar to the sensitivity with respect to the volatility, we observe that the optimal exercise
boundary is higher for higher interest rates. However, the extent of the difference is smaller,
and the boundary is not as sensitive towards the interest rate as to the volatility.
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In Panel C of Figure 1 we show the sensitivity of the optimal exercise boundary of the
sensitivity analysis with respect to the fee c. Since insurance companies don’t always charge
the fair fee, it is interesting to investigate what happens if the fee is somewhat higher or lower.
In our case, the fee takes values from 0.5% to 2.0%. The figure shows that with a higher fee the
optimal exercise boundary is lower. This is intuitive since with a higher fee, the policyholder
has to pay more for the guarantee. Thus, the mismatch between the premium for the guarantee
and its value is even greater resulting in earlier exercise times. This also increases the value of
the surrender option, showing that increasing c is not a good way to pay for surrender benefits
(see also Milevsky and Salisbury (2001)). We also observe that the optimal exercise boundary
is very sensitive to changes in the fee. From an initial exercise value of 150 at time zero for the
fair fee, the exercise value drops to about 115 for a fee of 2.0%. Likewise if the fee is reduced
to 0.5% the exercise value increases to just above 180.

Panel D of Figure 1 shows the sensitivity with respect to the maturity T . It illustrates that
with increasing maturity the optimal exercise boundary increases as well. Considering a short
time to maturity the fund value is less likely to reach high values. It is also known that the
price of plain vanilla options are negatively correlated with the time to maturity, i.e. it loses
value the closer it gets to maturity. Therefore, if we decrease the maturity T the option is
worth less and should thus be surrendered at a lower fund level.

We analyze the sensitivity of the exercise boundary with respect to the guarantee GT in
Panel E of Figure 1. For GT = 75, 100, 125 and 150 we compute the optimal exercise boundary
Bt. The graphs look quite different from the ones above. We observe that the higher the
guarantee the lower is the initial value of the exercise boundary. However at the same time the
slope is higher for graphs with a higher guarantee. This effect can be explained by considering
the fees c∗ displayed in the table below. The fee for a contract with a guarantee of 150 is about
15 times greater than the fee of a contract with a guarantee of 75. So on the one hand the
policyholder has a high guaranteed return at maturity. But on the other hand he has to pay
a high fee for it. For this reason, it is better for the policyholder to surrender the contract
earlier than if he had a lower guarantee implying a lower fee.

GT 75 100 125 150

c∗ 0.35% 0.91% 2.02% 5.28%

Lastly, Panel F of Figure 1 represents the effect of κ. The optimal boundary quickly moves
up when κ increases: the surrender incentive is much lower because of the surrender penalty.
In practice κ can be chosen high enough to have very low surrender incentives. Throughout
our study we assumed κ = 0 to find the maximum risk for companies if they do not charge for
the surrender option.
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Figure 1: Sensitivity Analysis: The fee rates are computed to make the contract with
the European benefit fair in all panels except in Panel C in which the sensitivity to the
fee rate c is studied.



5.2 Optimal Boundary for the VA studied in Section 4

We illustrate the shape of the optimal boundary for a VA with path-dependent payoff in Figure
2. Since the optimal boundary at time t, Bt, depends on time t and on the value of the fund Ft,
the optimal surrender boundary throughout the life of the contract must thus be represented
by a surface (Figure 2). It is also possible to fix a value Ft and obtain a curve which shows the
evolution of the boundary through time (as it is in Figure 3). We consider a 10-year contract
with payoff max(YT , GT ) as defined in Section 4. Here, we assume that the guaranteed roll-up
rate is 0.025 so that GT = F0e

0.025T . We also assume that there is no surrender charges.
Neglecting the surrender benefit, we use the fair fee c∗ = 0.0197. Market assumptions are as
in the previous section.
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Figure 2: Optimal exercise surface for a 10-year geometric average VA with GT =
F0e

0.025×10 and κ = 0.

For high values of FT , the boundary drops at maturity, because for any value YT > GT ,
the option is exercised. However, before maturity, it is not necessarily optimal to surrender
because the average of the fund might still increase. This is especially the case when Ft > Yt.
For low values of Ft, the boundary is close to GT e

−r(T−t), the discounted value of GT . When
the fund value is low, it drags the average down and decreases the probability that the average



at maturity is above the guarantee. Thus, for low values of Ft, it may be optimal to lapse the
contract and “cash in the gains” earlier. In general, for a fixed time t, this causes the boundary
to increase with Ft. This behaviour is more noticeable at the beginning of the contract since
there is more time for the average to increase. The optimal surrender boundaries are relatively
low, because the average is a lot less volatile than the fund. For this reason, it is often optimal
to surrender early, even when the fund value is high, because the expected increase in the
average is less than the risk-free rate. Thus, it would be optimal to withdraw the amount of
the average and invest it at the risk-free rate. In fact, when Yt increases past the GT e

−r(T−t),
the value of the option drops quickly because of the low volatility of the average. For this
reason, the optimal surrender boundaries are quite low, even for high values of the fund. This
indicates that average-type maturity benefits tend to increase the value of the surrender option.
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Figure 3: Optimal exercise boundary for a 10-year geometric average VA as a function
of time for different values of Ft with GT = F0e

0.025×10 and κ = 0.



6 Concluding Remarks

In this paper, we presented a method that allows us to derive a formula for the price of a VA
contract. We do so by decomposing it into a corresponding European part and an early exercise
premium. However, in order to use this pricing formula the optimal exercise boundary needs
to be known. Subsequently, we found that it fulfills an integral equation that can be solved
recursively going backwards in time. We implemented these formulae and performed some
numerical examples. They revealed that the optimal exercise boundary is a non-monotonic
function which increases at first and then decreases to finally attain the guaranteed amount at
maturity. By performing sensitivity analysis we found that with increasing volatility, interest
rate, surrender charge and maturity the optimal exercise boundary is pushed up. If we increase
the guarantee, however, we find a lower boundary at the beginning. But due to a higher
slope the boundary takes higher values as maturity is approached before dropping back to the
guaranteed level. This effect is explained by higher fair fees for contracts with a high guarantee.

Our method is general enough to be used when the benefits are path-dependent. We con-
sidered the geometric average of the fund as an example of such a payoff. Analogously, we
derived a pricing formula and an integral equation for the optimal exercise boundary which
depends on the geometric average as well as on the fund value itself. We found that in general
if the fund value is larger than the geometric average it might not be optimal to surrender, but
to wait as the fund will increase the geometric average. Surrender incentives tend thus to be
reduced by the presence of Asian benefits.

In this paper, we assumed that the underlying follows a geometric Brownian motion. Al-
though this model is too simple to fit actual market data, it is sufficient to shed some light on
the different factors influencing the optimal surrender boundary. Since the transition density
of the underlying asset is known explicitly, we are able to obtain integral representations for
the value of the surrender option. Our method can easily be extended to other market models
as long as the model guarantees the existence of a portfolio that replicates the fund value using
traded assets. In the case when the transition density is not known in explicit form, the method
can still be used, without deriving an analytical form for the integrand but approximating it
by Monte Carlo techniques for instance. Thus, our method can be extended to obtain the
surrender boundary under more realistic market models.
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A Optimal Surrender Region for GMAB

We prove here that the optimal surrender strategy for a GMAB is a threshold strategy. That
is, we show that when the surrender charge is of the form κt = 1 − e−κ(T−t), κ < c, then for
any time t before maturity, there exists a value F ∗t above which the value of the contract is
less than the surrender benefit available immediately. This proof is inspired by Section 3 of
Wu and Fu (2003). We let τ be a stopping time with respect to Ft and denote by Tt the set of
all stopping times τ greater than t and bounded by T . We express the value at time t of the
variable annuity contract V (x, t) by

V (x, t) = sup
τ∈Tt

E
[
e−r(τ−t)ψ(Fτ , τ)|Ft = x

]
,

where x = Ft and

ψ(x, t) =

{
e−κ(T−t)x, if 0 6 t < T

max(x,G), if t = T.
(24)

We also define the optimal surrender region at time t, denoted R∗(t), by

R∗(t) =

{
Ft : sup

τ∈Tt
E
[
e−r(τ−t)ψ(Fτ , τ)|Ft

]
6 ψ(Ft, t)

}
. (25)

In order to obtain the form of the optimal exercise region defined in (25), we first rewrite
R∗(t) as

R∗(t) =

{
Ft :

V (Ft, t)

ψ(Ft, t)
6 1

}
.

We analyze the function γ(x, t) := V (x,t)
ψ(x,t) in Lemma A.1.

Lemma A.1. Let γ(x, t) = V (x,t)
ψ(x,t) for t ∈ [0, T ]. Then,

• For t = T , γ(x, T ) = 1.

• For t ∈ [ 0, T ), γ(x, t) is non-increasing in x.

Proof. At t = T , we have that V (FT ,T )
ψ(FT ,T )

= ψ(FT ,T )
ψ(FT ,T )

= 1. For t ∈ [ 0, T ), note that γ(x, t) can be



rewritten as

γ(x, t) =
V (x, t)

ψ(x, t)
=

supτ∈Tt E
[
e−r(τ−t)ψ(Fτ , τ)

∣∣Ft = x
]

e−κ(T−t)x

=
supτ∈Tt E

[
e−r(τ−t)e−κ(T−τ)Fτ + e−r(τ−t)(G− Fτ )+1{τ=T}

∣∣Ft = x
]

xe−κ(T−t)

= sup
τ∈Tt

E

[
e−(r−κ)(τ−t)+Xτ−t + e−r(τ−t)

(
G

xe−κ(T−t)
− eκ(τ−t)+Xτ−t

)+

1{τ=T}

∣∣∣∣∣Ft = x

]
,

where Xτ−t = (r− c− σ2

2 )(τ − t) + σ(Wτ −Wt). Observe that x is a positive real number and

that E
[
e−r(τ−t)ψ(Fτ , τ)|Ft = x

]
is finite, which allows us to take 1

x inside the supremum. Now
fix a time u ∈ (t, T ] and observe that

E

[
e−(r−κ)(u−t)+Xu−t + er(u−t)

(
G

xe−κ(T−t)
− eκ(τ−t)+Xu−t

)+

1{u=T}

∣∣∣∣∣Ft = x+ ε

]

= E

[
e−(r−κ)(u−t)+Xu−t + er(u−t)

(
G

(x+ ε) e−κ(T−t)
− eκ(τ−t)+Xu−t

)+

1{u=T}

]

6 E

[
e−(r−κ)(u−t)+Xu−t + er(u−t)

(
G

xe−κ(T−t)
− eκ(τ−t)+Xu−t

)+

1{u=T}

]

= E

[
e−(r−κ)(u−t)+Xu−t + er(u−t)

(
G

Fte−κ(T−t)
− eκ(τ−t)+Xu−t

)+

1{u=T}

∣∣∣∣∣Ft = x

]
,

where the third line results from the fact that for a > b > 0 and c > 0, (b − c)+ 6 (a − c)+.
Then, since any τ ∈ Tt takes values in (t, T ] with probability 1, the inequality holds almost
surely for any τ ∈ Tt. In other words, we have that

E
[
er(τ−t)ψ(Fτ , τ)|Ft = x+ ε

]
x+ ε

6
E
[
er(τ−t)ψ(Fτ , τ)|Ft = x

]
x

, a.s.

for any τ ∈ Tt. Taking the supremum over all stopping times τ on both sides, we obtain
γ(x+ ε, t) 6 γ(x, t) for all t ∈ [ 0, T ). �

This result allows us to say that if we can find F ∗t such that γ(F ∗t , t) = 1, then for any
Ft > F ∗t , γ(Ft, t) 6 1 and for any Ft < F ∗t , γ(Ft, t) > 1. Thus, the optimal surrender region
R∗(t) has the form [ F ∗t ,∞ ).

Using Lemma A.1, we obtain the following theorem, which confirms that under certain
assumptions, we can always find such F ∗t , so that the optimal surrender strategy is of the
threshold type.



Theorem A.1. The optimal exercise strategy for the surrender option is to surrender the
contract when Ft > Bt, with

Bt = inf{x : V (x, t) 6 ψ(x, t)},

for t ∈ [ 0, T ). When the surrender charges are of the form κt = 1 − exp(−κ(T − t)) with
κ < c, then Bt <∞ for all t ∈ [0, T ].

Proof. We show that for any t ∈ [ 0, T ), it is possible to find x such that V (x, t) 6 ψ(x, t).
Note that for t ∈ [ 0, T ), ψ(x, t) = xe−κ(T−t). Thus, we need to show that it is possible to find
x∗ such that

V (x∗, t) 6 x∗e−κ(T−t).

Then, by Lemma A.1, the inequality will hold for any x > x∗. First, fix t ∈ [ 0, T ) and observe
that for any stopping time τ ∈ Tt, we have

E[e−r(τ−t)ψ(Fτ , τ)|Ft = x] = E[e−r(τ−t)Fτe
−κ(T−τ)|Ft = x] + E[e−r(T−t)(G− FT )+1{τ=T}|Ft = x]

= E[xe−κ(T−τ)e−(c+
σ2

2
)(τ−t)+σ(Wτ−Wt)|Ft = x] + E[e−r(T−t)(G− FT )+1{τ=T}|Ft = x]

6 E[E[xe−κ(T−τ)e−(c+
σ2

2
)(s−t)+σ(Ws−Wt)|τ = s]|Ft = x] + E[e−r(T−t)(G− FT )+|Ft = x]

6 E[xe−κ(T−τ)e−c(τ−t)|Ft = x] + e−c(T−t)P (x, t),

where P (x, t) is the of a European put option on the fund with Ft = x, with maturity T and

strike G. To obtain the last line, we use E
[
e−

σ2

2
s+σWs

]
= 1. Now, we need to show that for

any τ ∈ Tt, we can find x such that

E[xe−κ(T−τ)e−c(τ−t)|Ft = x] + e−c(T−t)P (x, t) < xe−κ(T−t).

We know that
lim
x→∞

P (x, t) = 0.

Then, for any ε > 0, there exists x∗ (large enough) so that P (x∗, t) < εec(T−t). Thus, for x∗,

E[x∗e−κ(T−τ)e−c(τ−t)|Ft = x] + e−c(T−t)P (x∗, t) < E[x∗e−κ(T−τ)e−c(τ−t)|Ft = x] + ε.

Since this holds for any ε > 0, we can get arbitrarily close to E[x∗e−κ(T−τ)e−c(τ−t)|Ft = x].
Since κ < c,

E[x∗e−κ(T−τ)e−c(τ−t)|Ft = x] < E[x∗e−κ(T−t)|Ft = x] = x∗e−κ(T−t).

Thus, for any x > x∗, we have

E[e−r(τ−t)ψ(Fτ , τ)|Ft = x] < xe−κ(T−t).

Taking the supremum over all stopping times on both sides, we get V (x, t) 6 ψ(x, t), which
ends the proof. �



B Optimal Surrender Region with Asian Benefits

We prove here that the optimal surrender strategy for the path-dependent payoff introduced
in Section 4 is also a threshold strategy. That is, we show that when the surrender charge
is of the form κt = 1 − e−κ(T−t), κ < c, and satisfies the conditions stated at the beginning
of Section 4, then for any time t before maturity and any value Ft, there exists a geometric
average Y ∗t above which the value of the contract is less than the surrender benefit available
immediately. This proof is similar to the one presented in Appendix A. We let τ and ψ(x, t)
be defined as in Appendix A. We express the value of the variable annuity contract V (Yt, Ft, t)
by

V (Yt, Ft, t) = sup
τ∈Tt

E
[
e−r(τ−t)ψ(Yτ , τ)|Yt, Ft

]
.

We also define the optimal surrender region at time t, denoted R∗(Ft, t), by

R∗(Ft, t) =

{
Yt : sup

τ∈Tt
E
[
e−r(τ−t)ψ(Yτ , τ)|Ft

]
6 ψ(Yt, t)

}
. (26)

We can also rewrite R∗(Ft, t) as

R∗(Ft, t) =

{
Yt :

V (Yt, Ft, t)

ψ(Yt, t)
6 1

}
.

We analyze the function γg(x, Ft, t) ≡ V (x,Ft,t)
ψ(x,t) and obtain Lemma B.1.

Lemma B.1. Let γg(x, Ft, t) = V (x,Ft,t)
ψ(x,t) for t ∈ [0, T ]. Then,

• For t = T , γg(x, FT , T ) = 1.

• For t ∈ [ 0, T ), γ(x, Ft, t) is non-increasing in x.

Proof. To prove this lemma, we use the fact that Yu|Ft, Yt has the same distribution as

Y
t
u
t F

u−t
u

t eµ(t,u)+σ(t,u)Z , where Z is a standard normal random variable, µ(t, u) =
r−c−σ

2

2
2u (u−t)2

and σ2(t, u) = σ2

3u2
(u− t)3. The rest of the proof is similar to the proof of Lemma A.1. �

In order to prove that the optimal surrender strategy is of the threshold type, we need to show
that for any t, Ft, 0 6 t < T , Ft > 0, there exists a value Y ∗t such that V (Yt, Ft, t) 6 ψ(Yt, t).
It is shown in Theorem B.1.

Theorem B.1. The optimal exercise strategy for the path-dependent surrender option is to
surrender the contract when Yt > Bt(f), with

Bt(f) = inf{x : V (x, f, t) 6 ψ(t, x)},



for t ∈ [ 0, T ), f > 0. Bt(f) < ∞ for all t ∈ [0, T ], f > 0 if the surrender charges are of the

form κt = 1− exp(−κ(T − t)) and satisfy κ <
r+c+σ2

6
2 , and c < r − σ2

6 .

Proof. We show that for any t ∈ [ 0, T ), f > 0 it is possible to find x such that V (x, f, t) 6
ψ(t, x). Note that for t ∈ [ 0, T ), ψ(t, x) = xe−κ(T−t). Thus, we need to show that it is possible
to find x such that

V (x, f, t) 6 xe−κ(T−t).

First, fix t ∈ [ 0, T ) and observe that for any stopping time τ ∈ Tt, we have

E[e−r(τ−t)ψ(Fτ , τ)|Ft = x]

= E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x, Ft = f ] + E[e−r(T−t)(G− YT )+1{τ=T}|Yt = x, Ft = f ]

6 E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x, Ft = f ] + E[e−r(T−t)(G− YT )+|Yt = x, Ft = f ]

The second term of the equation is simply the price of a geometric Asian put option with strike
G. This term goes to 0 as x → ∞ (see for example Kemna and Vorst (1990)). Now by the
same reasoning as in the proof of Theorem A.1, it suffices to show that there exists x∗ such
that

E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x∗, Ft = f ] < x∗e−κ(T−t).

Then, by Lemma B.1, the inequality will hold for any x > x∗. For a fixed t ∈ [0, T ), f ∈ (0,∞),
this can be done by taking any x > f . Let f < x∗ < ∞. Then, by first conditioning on the
stopping time τ , we have

E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x∗, Ft = f ]

= E[e−κ(T−τ)e−r(τ−t)+
t
τ
lnx∗+ τ−t

τ
ln f+ r−c−0.5σ2

2τ
(τ−t)2+σ2(τ−t)3

6τ2 ]

< E[x∗e−κ(T−τ)e−r(τ−t)+
r−c−0.5σ2

2τ
(τ−t)2+σ2(τ−t)3

6τ2 ]

< E[x∗e−κ(T−τ)e−r(τ−t)+
r−c−σ2/6

2τ
(τ−t)2 ]

< E[x∗e−κ(T−τ)e−
1
2
(r+c+σ2

6
)(τ−t)]

< E[x∗e−κ(T−τ)eκ(τ−t)]

= x∗e−κ(T−t)

To get the fourth and the fifth line, we use the assumption c < r − σ2

6 and the fact that
τ > τ − t. By taking the supremum over all stopping times, this allows us to conclude that
under our assumptions, it is always possible to find an average fund value x such that

V (x, f, t) 6 xe−κ(T−t).

�


